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As discussed in a recent paper by Brasseur & Wei (1994), scale interactions in fully 
developed turbulence are of two basic types in the Fourier-spectral view. The cascade 
of energy from large to small scales is embedded within ‘local-to-non-local ’ triadic 
interactions separated in scale by a decade or less. ‘ Distant’ triadic interactions 
between widely disparate scales transfer negligible energy between the largest and 
smallest scales, but directly modify the structure of the smallest scales in relationship 
to the structure of the energy-dominated large scales. Whereas cascading interactions 
tend to isotropize the small scales as energy moves through spectral shells from low to 
high wavenumbers, distant interactions redistribute energy within spectral shells in a 
manner that leads to anisotropic redistributions of small-scale energy and phase in 
response to anisotropic structure in the large scales. To study the role of long-range 
interactions in small-scale dynamics, Yeung & Brasseur (1991) carried out a numerical 
experiment in which the marginally distant triads were purposely stimulated through 
a coherent narrow-band anisotropic forcing at the large scales readily interpretable in 
both the Fourier- and physical-space views. It was found that, after one eddy turnover 
time, the smallest scales rapidly became anisotropic as a direct consequence of the 
marginally distant triadic group in a manner consistent with the distant triadic 
equations. Because these asymptotic equations apply in the infinite Reynolds number 
limit, Yeung & Brasseur argued that the observed long-range effects should be 
applicable also at high Reynolds numbers. 

We continue the analysis of forced simulations in this study, focusing (i) on the 
detailed three-dimensional restructuring of the small scales as predicted by the 
asymptotic triadic equations, and (ii) on the relationship between Fourier- and 
physical-space evolution during forcing. We show that the three-dimensional 
restructuring of small-scale energy and vorticity in Fourier space from large-scale 
forcing is predicted in some detail by the distant triadic equations. We find that during 
forcing the distant interactions alter small-scale structure in two ways : energy is 
redistributed anisotropically within high-wavenumber spectral shells, and phase 
correlations are established at the small scales by the distant interactions. In the 
numerical experiments, the long-range interactions create two pairs of localized 
volumes of concentrated energy in three-dimensional Fourier space at high 
wavenumbers in which the Fourier modes are phase coupled. Each pair of locally 
phase-correlated volumes of Fourier modes separately corresponds to aligned vortex 
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tubes in physical space in two orthogonal directions. We show that the dynamics of 
distant interactions in creating small-scale anisotropy may be described in physical 
space by differential advection and distortion of small-scale vorticity by the coherent 
large-scale energy-containing eddies, producing anisotropic alignment of small-scale 
vortex tubes. 

Scaling arguments indicate a disparity in timescale between distant triadic 
interactions and energy-cascading local-to-non-local interactions which increases with 
scale separation. Consequently, the small scales respond to forcing initially through the 
distant interactions. However, as energy cascades from the large-scale to the small- 
scale Fourier modes, the stimulated distant interactions become embedded within a sea 
of local-to-non-local energy cascading interactions which reduce (but do not eliminate) 
small-scale anisotropy at later times. We find that whereas the small-scale structure is 
still anisotropic at these later times, the second-order velocity moment tensor is 
insensitive to this anisotropy. Third-order moments, on the other hand, do detect the 
anisotropy. We conclude that whereas a single statistical measure of anisotropy can be 
used to indicate the presence of anisotropy, a null result in that measure does not 
necessarily imply that the signal is isotropic. The results indicate that non-equilibrium 
non-stationary turbulence is particularly sensitive to long-range interactions and 
deviations from local isotropy. 

1. Introduction: large-small scale couplings at large Reynolds numbers 
and isotropy in the small scales 

In fully developed turbulent flows, inertial nonlinearities create and maintain 
motions over a wide range of lengthscales. The motivation behind the current study is 
to develop a more complete understanding of interscale dynamics in general, and the 
dynamics underlying large-small scale interactions in high Reynolds number 
turbulence in particular, in context with hypotheses introduced by Kolmogorov in 
(1941). 

Kolmogorov (194 1) hypothesized that, at sufficiently high outer-scale Reynolds 
numbers, the distribution of velocity differences Su at scale r (a)  is statistically isotropic 
and (b) depends only on the local lengthscale r ,  dissipation rate e and kinematic 
viscosity v if r is much smaller than the outer scale I. Kolmogorov further hypothesized 
that within an inertia-dominated subset of scales r much larger than the viscous scale 
7 (but still much smaller than Z), the distribution of Su is independent of v, implying no 
direct frictional effects at these scales. Upon these simple hypotheses Kolmogorov 
formulated a similarity theory which remains a strong influence on turbulence theory, 
analysis, measurement and modelling. Whereas Kolmogorov formulated his similarity 
theory for stationary high Reynolds number turbulence in equilibrium at all scales, the 
hypotheses underlying the theory are often applied more broadly. 

Kolmogorov’s hypotheses have far-reaching kinematic and dynamic implications 
which continue to be explored in the literature. For example, for there to be no 
influence of the outer energy-dominated scales on the inner dissipation-dominated 
scales at large scale separations (i.e. high Reynolds numbers), no direct energy transfer 
can take place between these disparate scales. This, in turn, implies that energy must 
travel, on average, from the large-scale motions I to the small-scale motions 7 within 
‘local’ scale interactions (Onsager 1949) through an inertia-dominated range of 
intermediate scales with negligible dissipation. The rate of dissipation should therefore 
scale on large-scale velocity and time scales in equilibrium turbulence (Kolmogorov 
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1941). Grid turbulence data support this conclusion for Taylor microscale Reynolds 
numbers R, above roughly 50 (Batchelor 1953; Sreenivasan 1985; where R, is defined 
with component r.m.s. and longitudinal microscale). 

Whereas Kolmogorov did not elaborate on the dynamical implications of his 1941 
similarity theory, many others have. Brasseur & Corrsin (1987), for example, showed 
that Navier-Stokes dynamics implies the absence of direct energy transfer between 
asymptotically disparate scales of motion, consistent with the Kolmogorov hypothesis 
of statistically local energy transfer at scales far removed from the outer scale. The 
analysis of Brasseur & Wei (1994) indicates that, within the triadic dynamics of the 
Navier-Stokes equation, the separation between disparate scales must be greater than 
roughly 15 for negligible energy transfer to exist between those disparate scales. 

The absence of direct energy transfer between disparate scales, however, is 
dynamically insufficient to argue for the absence of all influence of the energy- 
containing scales 1 on scales r < 1. Batchelor (1953), for example, noted that the 
hypothesis of local isotropy at scales r < I implies statistical independence between 
motions at scale 1 and motions at scales r ,  which itself implies a dynamical decoupling 
of the smallest scales of motion from the largest scales at asymptotically large Reynolds 
numbers. The notion is that, the greater the disparity between ‘small’ scales and large- 
scale energy-containing motions, the more dynamically independent are the small-scale 
motions from the large-scale motions, in an ensemble average sense. Because the ratio 
of integral scale I and Taylor microscale h to Kolmogorov scale T,I scales as l / y  - R;‘’ 
and h / r  - R, in equilibrium turbulence, the disparity between large scales and small 
scales becomes asymptotically large at asymptotically high Reynolds numbers (in 
equilibrium turbulence). The conjecture of large-small scale independence is therefore 
an asymptotic argument which theoretically improves in the limits of smallest 
dynamical scale ( r  ;. 7) at fixed Reynolds number, and asymptotically increasing 
Reynolds number at fixed small-scale lengthscale (relative to h or v ,  say). If the 
conjecture of large-scale/small-scale independence is correct, then external information 
embedded in the large scales can only be transmitted to the small scales via multiple 
localized cascading interactions, through which, it is argued, memory of large-scale 
structure is lost at the smallest scales. At large scale separations, then, the smallest 
scales would attain a directionally independent, or ‘locally’ isotropic state, where 
‘local’ refers to scales of motion Y much smaller than the outer externally forced scales. 
Because local isotropy depends both on independence between large and small scales 
and on multiple cascading interactions, the argument is an asymptotic one which 
improves with decreasing scale ( r  + 7) at fixed R,, and increasing Reynolds number 

Whereas the hypothesis of no direct energy transfer between the large and small 
scales has good experimental support (above), the hypothesis of local isotropy remains 
controversial. The issue has been studied experimentally (Antonia, Anselmet & 
Chambers 1986; Browne, Antonia & Shah 1987; Champagne 1978; George & Hussein 
1991 ; Karyakin, Kuznetsov & Praskovsky 1991 ; Saddoughi & Veeravalli 1994), 
numerically (Yeung & Brasseur 199 1 ; Kim & Antonia 1993 ; Brasseur & Wei 1994) and 
theoretically (Brasseur 1991 ; Durbin & Speziale 1991 ; Yeung & Brasseur 1991 ; 
Lumley 1992; Nelkin 1993). Useful overviews of experimental issues are given by 
Sreenivasan (1991) and Van Atta (1991). Triad-based spectral arguments are 
summarized by Brasseur & Wei (1994). 

The motivation behind the current study is to develop a more complete 
understanding of the dynamics underlying large-small scale interactions in high 
Reynolds number turbulence and the widely applied hypotheses of large-small scale 

(R, + 00). 
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independence and local isotropy, concurrently in the Fourier-space and physical-space 
views. This study is a continuation of the analysis by Yeung & Brasseur (1991, hereafter 
referred to as YB), which itself is based on the controversial arguments of Brasseur 
(1991). Brasseur observed that, because the nonlinear terms in the Navier-Stokes 
equation written in Fourier space contain explicit interactions between disparate scales 
which retain a zeroth-order contribution in the limit of infinite scale separation, the 
small scales are not, in principle, independent of the large scales at infinite Reynolds 
numbers. Furthermore, although it was shown that no energy is transferred directly 
between the large and small scales in these triadic interactions (Brasseur & Corrsin 
1987), the large scales directly influence small scale evolution. The structure of the 
distant triadic terms in such that large-scale anisotropy, in principle, forces anisotropic 
energy exchange among the small scale modes. Given sufficient time, then, the distant 
triadic interactions in principle produce anisotropic motions at the small scales. The 
level of anisotropy induced at the small scales depends on the net effect of all distant 
interactions which must complete with other dynamical effects, principally the 
isotropizing effects of local and nonlocal triadic interactions (Brasseur 199 1 ; Brasseur 
& Yeung 1991; Brasseur & Wei 1994). Which effects dominate at any point in time 
depends on a number of factors, including separation between scales, strength and 
temporal coherence of large-scale anisotropy, and previous history. 

In the numerical experiment of YB, four large-scale Fourier modes were coherently 
forced in a highly anisotropic manner in order to stimulate marginally distant triadic 
interactions within the smallest dynamical scales of initially isotropic turbulence at a 
moderate Reynolds number. It was found that the smallest scales became anisotropic 
after one eddy turnover time and, consistent with the form of the distant triadic 
equations, the smallest scales develop the highest level of anisotropy. The study showed 
that anisotropic small-scale energy transfer was a direct consequence of the marginally 
distant triadic interactions, suggesting that the effect should exist also at high Reynolds 
numbers. However, the structure of the anisotropic small-scale turbulence, the manner 
in which anisotropic small-scale structure is induced by large-scale forcing, and the 
corresponding interpretation of the distant interactions in physical space, were not 
discussed. These issues are addressed in the current study. 

We find, in this study, that the form of the distant triadic equations, which apply in 
the asymptotic limit of infinite Reynolds number, explain most of the details of small- 
scale restructuring in Fourier space, and that the small-scale restructuring is of two 
types : redistribution of energy within high-wavenumber shells, and a restructuring of 
the phase relationships among small-scale Fourier modes. We show that the physical 
space description of direct small-scale restructuring due to large-scale forcing is 
advection and distortion of small-scale vortical elements by energy-dominated eddies. 
Very interesting is the observation that localized regions in Fourier space at high 
wavenumbers directly describe subsets of aligned vortex tubes in physical space. 

The competition between distant and local-to-nonlocal triadic interactions becomes 
evident in the return towards isotropy of the small scales after continued large-scale 
forcing, indicating that non-equilibrium non-stationary turbulence is particularly 
sensitive to direct large-small scale interactions and deviations from local isotropy. We 
show that this return to isotropy is related to the ratio of energy in the large scales to 
the small scales, which itself is related to the relative importance of distant to local and 
nonlocal interactions. Very important is the observation that, while anisotropy in the 
second moment returns to zero at the small scales, the structure of the turbulence is still 
anisotropic. Third-order moments, however, do capture this anisotropy, indicating 
that definitive tests of local isotropy cannot be made with single anisotropy measures. 
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2. Triadic arguments underlying the current study 
Analytically, scale interactions are conveniently analysed using Fourier decompo- 

sition, where a scale of motion is characterized as a Fourier mode k = ke“,, with 
lengthscale r N k-l, direction 2k, energy e(k) = li(k).li*(k), and phase (the real and 
imaginary parts of a):  

u(x, t )  = c fi(k, t )  eik.x. (1) 
k 

The evolution of Fourier mode k in Navier-Stokes dynamics is given by 

[h(k)lNL = [i + vk2] &(k) = - i 2 a@),, [k  .li(k -p)], 
P 

where NL refers to the nonlinear terms and 

a@),, = [I- kk/k2]*li(p) 

is the vectorial projection of lib) onto a plane perpendicular to k ,  / being the identity 
tensor. The rate of energy change in mode k is given by 

[e(k)INL = [i + 2vkz] e(k) = 2 Im 2 ri*(k). lib) [ k -  li(k - p ) ] } ,  i, (3) 

where * denotes complex conjugate. The nonlinear intermodal interactions in Newton’s 
law are contained within a sum over all triads of Fourier modes containing k .  Each 
triad is formed by a triangle of wave vectors, 4, p and q .= k - p  and each wave vector 
k has a negative counterpart, - k such that a( - k )  = [a(k)]* and e( -k) = e(k). 

It was pointed out by Brasseur (1991) that the direct influence of large-scale structure 
on small-scale dynamics is given by the net effect of all ‘distant’ triadic interactions in 
which k is in the small scales and p is within the energy-containing scales. That is, the 
nonlinear effects of the energy-dominated, or ‘large scales’, on the small scales is given 
by the first term in the following restructuring of equations (1) and (2): 

= c { c [distant triadic interactions, p / k  < 1]+ c [all other triads] eik.x. (4) 

Collections of Fourier modes within high-wavenumber shells describe the motions 
with ‘small-scale’ structures in physical space (see Brasseur & Wang 1992). The 
hypotheses of large-small scale independence and local isotropy imply that the 
cumulative effects of the first group on the right-hand side of (4) disappears in the 
asymptotic limit of infinite scale separation, k / p  N q / p  --f co (implying infinite Reynolds 
numbers). Brasseur (1991) argued that if an arbitrary member of the ‘distant’ triadic 
group does not disappear in the limit k / p  N q /p+  00, then the group as a whole does 
not disappear at infinite Reynolds numbers, in principle, and that small-scale evolution 
contains some level of large-scale dependence. The general characteristics of a single 
arbitrary distant triadic interaction, then, would be reflected in the general 
characteristics of the ensemble of distant interactions, and therefore the general 
characteristics of the first group in (4). 

k s  p s  P E  I 
small  large other 
scales scales scales 
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Brasseur & Corrsin (1987) isolated an arbitrary distant triadic interaction in the 
asymptotic limit 6 = p / k  - p / q  + O  and found a zeroth-order contribution, implying 
that the first term in (4) does not asymptotically disappear in the high Reynolds 
number limit: 

where q = k - p .  The corresponding equations for energy exchange within an arbitrary 
distant interaction are 

(6) 
[ a . P ) I N L  = O ( a  

[4k)INL = -[e(q)lNL = 2Im{a*(k).li(q)[k.ti(p)])+0(6). 

We define a ‘distant’ triadic interaction between disparate modes (where small-scale 
mode energy is of order or less than large-scale mode energy) as one which satisfies ( 5 )  
and (6) is a very good approximation. This asymptotic form implies that no direct 
energy transfer takes place between the large and small scales in the limit S+O, 
consistent with Kolmogorov (1941). However, whereas ( 5 )  and (6) imply that the small 
scales have no influence on the large scales in the asymptotic limit, large-scale structure 
directly modulates the evolutions of small-scale Fourier modes through the coupling 
terms involving the large-scale modes, lib). Furthermore, as was argued by Brasseur 
(1991), the structure of the coupling term is such to imply anisotropic energy exchange 
at the small scales within the distant triadic group if the large scales are anisotropic. 

It has been argued by Waleffe (1992) that whereas individual triadic interactions may 
not disappear in the asymptotic limit, it is possible that the individual energy transfers 
within members of the distant triadic group in equation (4) cancel, leaving no net effect 
of this group. In the forced simulation here and in YB this is not the case, and is 
therefore not true as a general statement. Furthermore, in context with local isotropy, 
it is important to recognize the distinction between net energy transfer at the small 
scales within the distant triadic group 

T m a l l  scales C [4k)INL 
k e  

small scales 

= C { C [triadic interactions where p / k  4 1]+ C. [all other triads] , (7) 

and structural evolution of three-dimensional physical space relative to three- 
dimensional Fourier space, as described by equation (4). Structural evolution in 
physical space involves a redistribution of energy and/or phase relationships among 
Fourier modes in Fourier space. As demonstrated in YB, the distant triadic group 
allows large-scale structure to directly alter small-scale structure without altering the 
energy content within the small scales. Brasseur & Wei (1994) point out that the 
importance of the distant triadic group in (4) in small-scale dynamics centres on the 
relative contribution of the distant triadic group to (4) in comparison with all other 
dynamical effects. Whereas the relative importance of the distant group may be 
minimal, for example, in the inertial subrange in stationary high Reynolds number 
turbulence, the effect of the distant group may be very important, even dominant, in 
non-stationary non-equilibrium turbulence for certain periods of time. 

Furthermore, Brasseur (1991) points out that the relative contribution of individual 

k e  p e  P E  I 
small large other 
scales scales scales 
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distant triadic interactions in the first group in (4) to roughly local triads is given in the 
asymptotic limit by 

where E(k,,) - e(k,,) k:, is the peak in the energy spectrum ( L S  denotes large scale) 
and E(k,,) - e(k,,)ki, is the spectral energy in a high-wavenumber shell centred on 
k,, (SS denotes small scales). Thus, the relative importance of distant interactions in 
small-scale dynamics increases asymptotically with decreasing scale, suggesting that 
distant interactions become progressively more important within progressively smaller 
scales (shown in Brasseur & Wei 1994). Consequently, the effects of the distant group 
should be sought in the limit of decreasing scale for fixed Reynolds number as well as 
for progressively higher Reynolds numbers. 

If deviations from local isotropy arise from the distant triadic group due to large- 
scale restructuring, the triadic equations suggest that deviations should be greater in 
the smallest scales (53.1) and should appear initially at the smallest scales (53.4). This 
conclusion is opposite to the traditional view that large-small scale coupling weakens 
with decreasing scale, and it is upon these observations that the current study and that 
of YB are based. 

3. The numerical experiment: predictions in the asymptotic limit 
The numerical experiment of YB was designed to coherently stimulate well-defined 

distant interactions in a manner which can be understood concurrently in physical 
space and in Fourier space. Based on the specific structure of the forcing, a number of 
predictions follow from the distant triadic equations (6) which are relevant only to the 
distant triadic group in equation (4) and not predictable by the local and non-local 
triadic groups. We argue that if the numerical simulations display dynamics at the 
smallest resolved scales which follow only from the distant triadic group, then the 
observed characteristic is a general effect of direct interaction between large and small 
scales which applies at infinite scale separations, and therefore at large Reynolds 
numbers. As computer speed and memory increase, this argument must be tested at 
continually greater scale separations. 

In the earlier work of YB the development of anisotropy at high wavenumbers in 
Fourier space due to coherent anisotropic forcing in four low-wavenumber modes was 
shown to be a direct consequence of the distant triadic group. The small-scale 
anisotropy increased with increasing wavenumber consistent with the distant form of 
the triadic equations, (5) and (6),  which indicate that the effect of distant triadic 
interactions increases relative to local interactions with increasing wavenumber at the 
smallest dynamically relevant scales (Brasseur 1991). In the current paper we study the 
details of small-scale restructuring in three-dimensional Fourier space and physical 
space concurrently. A number of predictions are made here which follow only from the 
asymptotic form relevant to distant triadic interactions. These predictions are shown 
in following sections to be consistent with the simulations. 

3.1. Redistribution of small-scale energy by forcing 
Consider the manner in which mode energy is rearranged within high-wavenumber 
shells by the distant group of triadic interactions in comparison with the local and non- 
local groups in high Reynolds number fully developed turbulence (Brasseur & Yeung 
1991). We begin with statistically isotropic turbulence at high Reynolds numbers. As 
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FIGURE 1. Three-dimensional isosurfaces of the enstrophy (a) in physical space and (b) in Fourier 
space for isotropic turbulence just before forcing. The isosurface levels of w,(x) G@) in (a) and 
G'(k)Cj:(k) in (b) are 2.5 and 0.001 r.m.s. above the mean value of the enstrophy field, respectively. 
Note that statistical isotropy in physical space implies spherical symmetry in Fourier space. 

illustrated in figure 1, isosurfaces of constant energy (or enstrophy) in isotropic 
turbulence are spheres centred at the origin in k-space, the radius of the sphere being 
inversely proportional to the scale of turbulence. Now imagine anisotropic forcing at 
the large scales such that the four low-wavenumber modes shown in figure 2, k k!) and 
+k$?, rapidly increase in energy relative to all other Fourier modes (details are given 
in $4). The four modes are forced coherently through the Fourier coefficients d(kF) 
which are within the (kz. k,)-plane. (This forcing corresponds, in physical space, to the 
addition of energy in an array of 16 counter-rotating vortices as shown in figure 3.) We 
ask, how will interscale transfer at the small scales be modified by this forcing and what 
spectral energy distribution will result? 

Consider intermodal energy transfer e(k) among high-wavenumber modes k in 
response to this forcing. In particular, compare the response at the small scales to 
forcing within the distant triadic group, given by (6), with members from the local and 
non-local groups, given for triad k - p  - q = 0 from (3) by 

[e(k)INL = 2 Im{G*(k). li(q)[k- a@)] + d*(k).d@)[k.li(q)]}. (9) 

Note in comparison with (6) that the second term in (9) is negligible when k / p  is large. 
Consequently, when distant triadic interactions dominate (equation (8)), some 
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FIGURE 2.  Schematic of forcing in Fourier space. The four forced large-scale Fourier modes and their 
Fourier coefficients are shown. These two pairs of modes are of equal magnitude and oriented at 
f45" and f 135" to the positive k,-axis in the (kz, k,)-plane. The real parts of the Fourier coefficients 
are zero and the imaginary parts are shown in the figure. Also illustrated is a single triadic interaction 
between a forced mode k ,  and a high-wavenumber mode k (not drawn to scale). 

1 .oo 

0.75 

1 
L 0.50 

0.25 

0 

FIGURE 3. The forced velocity field in physical space. Shown are velocity vectors of the two- 
dimensional velocity field of the 16 large-scale counter-rotating (+ and -) vortices through which 
the initially isotropic turbulence is coherently forced. Coordinates are shown normalized by the 
length L = 2x of the cubic solution domain. Note that stagnation points eventually form at locations 
in the (x,y)-plane equidistant from sets of four vortex cores. 
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differences in energy exchange at high wavenumbers may be anticipated, owing to the 
structure of the triadic equations particular to distant interactions. 

Consider all triadic interactions within a high-wavenumber shell shortly after 
forcing, at a time when the only anisotropy within the turbulence comes from the four 
forced modes, f kp) ,  n = 1,2. Now identify p with one of the forced modes, p = k$),  
(refer to figure 2), and let k be an arbitrary mode within a high-wavenumber shell. 
Consider modal energy exchange e(k) with different triadic groups as a function of 
position within a high-wavenumber shell : 

t 4 k ) l N L  = [ 4 k ) l d i s t a n t  + tYk)lother, (10) 

where [e(k)ldistant is to be interpreted as all distant interactions between the forced 
mode kg) and modes k within a high-wavenumber shell. Consider, in particular, energy 
exchange within different members of [e(k)ldistant, given by (6) in comparison with a 
local-to-non-local member of [e(k)lother, as predicted by (9). Because continuity forces 
wavevector k to be perpendicular to its Fourier coefficient li(k), the dot products in (9) 
and (6) are zero when k,  p (and therefore q) are parallel. Thus, e(k) = 0 within all 
triadic interactions among kg) and those high-wavenumber modes k which are nearly 
parallel to kg) .  The triadic equations therefore indicate that the contribution to e(k) in 
high-wavenumber modes k from distant interactions with k$) will be reduced when k 
is in a cone surrounding kg) relative to k outside the cone. Because k$) contains more 
energy than surrounding low-wavenumber modes, we conclude that non-isotropic 
forcing through k(F1) leads to non-isotropic energy exchange in high-wavenumber shells 
within the distant triadic group of (10). 

More can be predicted from the distant triadic equations which are relevant only to 
the distant triadic group. Equation ( 5 )  indicates that only the first term in (9) is non- 
negligible within individual distant triadic interactions at large scale separation, the 
term that contains the combination, k.ii(p), wherep = kg) .  Because the modes fkp) 
are forced so that 6(kF) are confined to the (kx, k,)-plane, k.iI(p) = 0 for all high- 
wavenumber k in the z-direction, and e(k) is small in a cone surrounding the z-axis. 
This prediction is relevant only at large wavenumbers where the asymptotic form of the 
triadic equations are valid. 

We conclude that [e(k)ldtstant at high wavenumbers has a non-uniform distribution 
so as to be reduced within cones in the directions flip), and in the direction 2,. 
Conversely, [e(k)ldistant is maximal along the k,- and k,-axes. Thus, within the distant 
triadic group, high-wavenumber modes surrounding the k, and k, axes are rapidly 
exchanging energy while those modes surrounding fkp) and the k, axis are not. The 
cascade of energy from larger to small scales is dominantly within local and non-local 
triadic interactions (Brazseur & Wei 1994; Zhou 1993 a, b), while the distant group tends 
to transfer energy laterally within high-wavenumber spectral shells (i.e. perpendicularly 
to high-wavenumber wavevectors) rather than from one shell to the next (Brasseur & 
Wei 1994). During forcing, [e(k)ldistant moves energy laterally within shells most 
rapidly among those modes surrounding the k,- and k,-axes, the distant interactions 
dominating interscale energy transfer in those regions. By contrast, in the high- 
wavenumber regions aligned with fkg) and &, [e(k)ldistant is suppressed and the 
transfer of energy to higher wavenumbers within local and non-local triadic 
interactions is relatively unimpeded by the distant triadic group, and energy is 
transported away from these regions to higher wavenumbers where it is more readily 
dissipated. 

Prediction. Therefore, we predict that, over time, forcing through + k g )  will lead 
to a redistribution of energy in high-wavenumber shells as a consequence of distant 
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interactions without direct energy transfer between the forced modes and the small 
scales. Specifically, forcing will cause a depletion of energy in the directions k g )  and 
6, relative to modes lying near the k,- and k,-axes as a consequence of the distant 
triadic group. The discussion surrounding (8) indicates that this redistribution of 
energy and consequent anisotropy will be stronger at smaller scales. 

We show in $7 that the numerical simulations confirm this prediction and, because 
the characteristics of the distant triadic group are given in the limit of asymptotically 
large scale separations, we argue that the predicted characteristic would also exist at 
asymptotically high Reynolds numbers. 

3.2. Redistribution of small-scale phase by forcing 
Consider now the evolution of the Fourier coefficients within the high-wavenumber 
regions surrounding the k,- and k,-axes which, we argue, will contain most of the 
small-scale energy after forcing. As indicated by (4), the eyolution of the velocity field 
at the small scales is given by the cumulative evolution of [fi(k)ldistant and [fi(k)],,,,, for 
all high-wavenumber k, where 'distant ' again implies interactions between modes k 
and the forced modes p = & kg) ,  as given by (5). The corresponding evolution of k for 
an arbitrary member of the local or non-local groups is given from (2) by 

[ m I N L  = -i{fi(q)lk [k.fi(P)l+ f i ( P ) l k  [k.fi(q)l}. (1 1) 

Comparing with ( 5 )  shows that when p < k - q, the second term in (1 1) is negligible 
and fi(q)lk + fi(q). Consequently, whereas in local and non-local triadic 
interactions the direction of [fi(k)INL varies greatly from interaction to interaction, in 
distant interactions [d(k)lNL K fi(q) and [fi(q)INL K li(k), where k and q are the two 
high-wavenumber modes in the distant interaction. In other words, distant interactions 
tend, over time, to vectorially align the real and imaginary parts of the Fourier 
coefficients. Furthermore, the dot produced li*(k).fi(q) in [e(k)lNL = -[e(q)INL of (6) 
indicates that energy transfer is maximal within distant interactions when G(k) and 6(q) 
are aligned. 

Prediction. From these considerations, we predict that forcing will, over time, lead 
to an alignment of the real and imaginary vectorial components of d(k) in those regions 
where distant interactions dominate the dynamics - that is, within the high- 
wavenumber modes near the k,- and k,-axes. 

3.3. Redistribution of small-scale component energy by forcing 
Consider the time rate of change in component kinetic energy within an arbitrary 
triadic interaction, given by 

2 3 

where T,(k) = 2 Im {',*(k) [d(q)iklol [k * fib)] + G,*(k) ['(P)ikIa [k * fi(q)l>, 

and q = k - p .  In the limit of infinite scale separation between a high-wavenumber 
mode k and a low-wavenumber mode p ,  where 6 = p/k - p / q  < 1, equation (12) has 
the following form applicable to distant triadic interactions : 

(13) T,,(k) = 2 Im {G,*(k) G,(q) [k-fi(p)]} + O(6). 

Note that the dot products in (12) indicate that, like e(k), T,,(k) is suppressed in the 
directions p = +_ k(Fn) at all k ,  while (I  3) indicates that T,,(k) is suppressed also in the 
direction e", within distant interactions at high k .  
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We ask now which components are most likely to receive energy within those 
dominant distant triadic interactions among the forced modes, 2 kg) and high- 
wavenumber modes near the k,- and &-axes. Consider the distant interactions between 
p = f k g )  and modes k and q near the k,-axis. By continuity, zi,*(k) and zi,(q) in (13) 
are non-zero only when a = 3 or 2. Similarly distant triadic interactions between the 
forced modes and high-wavenumber modes lying near the k,-axis can only move 
energy into the directions a = 3 or 1. 

Prediction. Because the distant interactions with the forced modes move energy into 
the z velocity component within high-wavenumber modes along both the k,- and k,- 
directions, we predict that component energy at the small scales will grow in the z- 
component relative to the x- and y-components. 

3.4, Timescales: relative effects of local-to-non-local and distant triadic interactions 
It was shown by Brasseur & Wei (1994) and Zhou (1993a, b) that the energy cascade 
from large to small scales is primarily within local and non-local triadic interactions 
with scale separation between roughly 1.5 and 10, with the most influential cascading 
interactions being those with scale separations up to roughly 5-7. Brasseur & Wei’s 
analysis suggests that as energy moves from larger to successively smaller scales 
through local-to-non-local interactions, it becomes increasingly more uniformly 
distributed within spectral shells, thus leading to an increasingly isotropic distribution 
of energy with decreasing scale. The anisotropizing influence of the distant triadic 
group at the small scales, therefore, may be expected to be counteracted by the 
isotropizing influence of cascading ‘ local-to-non-local ’ triadic interactions. The 
timescale over which energy cascades to the small scales, however, is different from the 
small-scale response to distant triadic interactions with the energy-containing scales. 

Consider the timescale 7(k) for energy transfer to or from mode k with energy e(k): 

where e(k) and i (k)  represent average values among modes within spectral shells 
centred on k. That is, we develop rough estimates for those timescales contributing to 
the rate of energy transfer within scales of motion r N l /k  during interactions with 
other scales of motions. Consider, in particular, the timescale for energy transfer at the 
small scales due to a distant triadic intereaction, 7(k)dtstant, in comparison with 
the timescale associated with the cascade of energy from the large-scale forced 
mode p = k,, to small-scale modes k ,  T(k)cascade. Equation ( 5 )  implies P(k)distant - 
k(e(p))‘/2 e(k), so that 

7(k) - e ( k ) / 4 k ) ,  (14) 

(15) 112 -1 
7 ( k ) d i s t a n t  - @[&)I 1 . 

The timescale over which large-scale energy cascades to the small scales is governed 
by the number and timescales of multiple stages of non-local triadic interactions 
moving energy from larger to smaller scales. The timescale associated with single non- 
local interactions transferring energy to a higher-wavenumber mode k L  from a lower- 
wavenumber mode k ,  is, from (9) and (14), 

where e( k)  is the average mode energy in a shell of radius k,  and k,, k M ,  k ,  are the 
short-, medium- and long-wavenumber modes in a non-local energy-cascading 
interaction (i.e. subscripts S and L denote larger-scale and shorter-scale motions, 
respectively, in given triadic interactions). If the energy spectrum is given by 
E(k) - k-”, then e(k) - k-(m+2) and 

7(kL)non-20cal ( [ e ( k S )  e(kM>/e(kL>l”2kk,>-’,  (16) 

7(kL)non-locai - [ap]-(m+W2km/2 L ?  (17) 
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where k, = ak, = pk,, a 2 /3 2 1 .  For fixed a, a lower bound for 7(k)non.loeal is given 
by maximum p. Since k,, k ,  and k ,  form a triangle, when 01 2 2, p,,, = ./(a- 1)  
and (," l)-(m+2"a 

7(k,)non-loeal - ykr", where y = - (a 2 2); (18) 

y decreases with increasing a (this is also true when a < 2). As an example, if m = and 
a = 7, 7(kL)non.local - 0.02k;" (from the work of Brasseur & Wei 1994 and Zhou 
1993 a, b, a = 7 is chosen as a maximal separation between dominant energy-cascading 
interactions). 

It may be shown that the timescale for interscale energy transfer to the middle- 
wavenumber mode k ,  is greater than 7(kL)non.localr so (18) is a lower bound for energy 
cascading triadic interactions. Because 7(kL)non.local increases with increasing wave- 
number, k,, the minimum time required for energy to cascade from the large-scale 
forced modes at p to high-wavenumber modes at k is given by the final stage in the 
energy cascade, the non-local interactions which transport energy from (1 / a )  k to k 
(k = k, in equation (18)). Using (15) and (18), the minimum time for the energy 
cascade to high-wavenumber k may be compared with the timescale for energy 
exchange due to distant triadic interactions between low-wavenumber p and high- 
wavenumber k : 

'(')cascade - y(k/p)(m+2)'2 or greater 
7(k)distant 

- 0.02 (k/p)"16 for m = and a = 7. (19) 

In the current 12g3 simulations, k / p  - 10-20 and 7(k),,scade/7(k)distclnt - 1 . 4 5  or 
greater form = $ and a = 7. The ratio 7(k),,,,,de/7(k)distant increases rapidly with scale 
separation, k/p. 

We conclude that the smallest scales respond to forcing within the distant triadic 
group before the energy cascade transports significant energy to the small scales, and 
that the difference in response time increases with scale separation. Furthermore, (1 5 )  
indicates that, in general, the smaller the scale, the more rapid is the response from 
distant interactions to forcing. We have already argued (93.1) that anisotropy induced 
at the small scales through the distant triadic group will be stronger at smaller scales. 
From the scaling arguments above, we now argue that within distant interactions the 
smallest scales respond to large-scale forcing first, followed by the next smallest scales, 
and so on. 

Prediction. We predict, therefore, that small-scale anisotropy will appear earlier at 
smaller scales. We further predict that the level of anisotropy at the small scales will 
initially increase due to direct large-small scale interactions, then decrease at later time 
as large-scale energy from the forced modes reaches the small scales through local-to- 
non-local triadic interactions. Because the isotropizing influence of the energy cascade 
arrives from the large scales, the reduction in anisotropy will appear at the larger scales 
Jirst, then proceed to successively smaller scales. 

Because the ratio of timescales between the cascade of energy to the small scales and 
direct large-small scale interactions increases with scale separation, the effect of the 
distant group will be felt over longer time at larger Reynolds numbers since more time 
is required for energy to travel from large to small scales with greater scale separation. 

It should be emphasized that the predictions in $ 3  follow from the asymptotic form 
of distant triadic interactions, applicable in the infinite Reynolds number limit. We 
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argue, therefore, that if the predicted response to forcing is demonstrated in the 
numerical experiments and if this response is shown to be a consequence of the most 
non-local and distant interactions, the effect is applicable also in the infinite Reynolds 
number limit. 

4. Simulation details, analysis techniques, and the numerical experiment 
4.1. Simulation details and analysis techniques 

To simulate the response of isotropic turbulence to anisotropic forcing at the large 
scales, direct numerical simulations of the Navier-Stokes equations were carried out 
using Rogalio's (198 1) pseudo-spectral algorithm for homogeneous turbulence. The 
particular version of code used in derived from that of Yeung & Pope (1988). The 
solution domain is a periodic cube of length L = 27t with 1283 equispaced grid points, 
so that the discrete wavevector components have integer values. Velocity fields in 
wavenumber space, from which velocity gradients can be readily calculated, are saved 
at selected time intervals for analysis. 

Interscaling couplings arise from nonlinear terms in the Fourier-spectral Navier- 
Stokes equations. In Cartesian tensor notation, the continuous form of ( 2 )  may be 
written as 

(20) 

(21)  

($+vk')Li((k, t )  = -zp",(k) ziZ(p)G,(k-p)dp, s i 

where <Z,(k) = k,(6i, -k,  kJk2)  + k,(6i, -ki k, /k2).  

Here 
The energy and vorticity spectrum tensors are given by 

is the Kronecker delta tensor, and the usual summation convention applies. 

Eij(k) = i[tii(k) ir,*(k)+ zit(k) zij(k)], (22)  

and K,(k) = $[3,(k) 3:(k) + 3?(k) dj(k)],  (23 )  

where 6 ( k ) ,  the Fourier transform of the vorticity field o(x), is given by -ik x ri(k). 
(Note that fi*(k) = a( - k )  and Eii(k) is the same as e(k) in equation (3 ) . )  The energy 
spectrum tensor evolves according to 

= q j ( k )  - 2vk2Eij(k), 
at 

where intercomponent and interscale energy transfer is represented by the transfer 
spectrum tensor, 

qjw = ~ I m ( [ ~ , , ( k ) z i : ( k ) + ~ , , ( k ) z i t ( k ) l s ~ , ( ~ ) z i , ( k - p ) d ~ ) .  (25 )  

While (20) and (25)  contain convolution integrals which can be evaluated efficiently 
by a pseudo-spectral method with number of operations scaling as N 3  In N ,  where N is 
the number of grid points in each coordinate direction, the pseudo-spectral approach 
does not provide direct information on individual triadic interactions. On the other 
hand, whereas the triad-geometrical formulation of (2) and ( 3 )  as a discrete sum over 
triadic interactions is computationally expensive with the number of operations - N 6 ,  
it is feasible if a small dynamically significant subset of triadic interactions is computed 
(Brasseur & Wei 1994), and will be used to advantage in $7 to study the effects of 
geometrical properties of the triads on energy transfer. 
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The spectra E,,(k), Tj(k)  and V&(k) integrated over spectral shells of radius k and 
unit thickness to give the radial spectrum tensors E,(k), T j (k )  and F$(k). Half the traces 
of EJk) and Tj(k)  give the radial energy and transfer spectrum functions E(k) and 
T(k), respectively. 

Contributions to the energy transfer within a spectral shell from different spectral 
shells in wavenumber space are conveniently represented using the formalism 
introduced by Domaradzki & Rogallo (1990), where T(kIp)  is defined as the transfer 
of energy to wavenumbers k due to triads with at least one leg in a spherical shell 
centred on p .  Similarly, T(k Ip, q) is defined as energy transfer to k due to triads with 
one leg in a shell centred on p and the other leg in a shell centred on q. These definitions 
imply the relationships 

Similar relations hold for the component transfer spectra T,(k) (see YB). 
To quantify scale-dependent features of turbulence statistics in physical space, 

various correlations between band-pass-filtered variables are carried out in Q 9 (e.g. She, 
Jackson & Orszag 1988). For chosen sets of Fourier modes 2’ and X specifically, the 
filtered velocity and vorticity fields are defined by u(x I 2) and o(x I X )  which have 
Fourier transforms 

and 

k E 2  {‘fa”’. otherwise’ 
‘(k 19) = 

k e X  (“b“‘. otherwise’ 
&(k I 2) = 

where 2 and X are specified spectral shells. 
Whereas to quantity scale-dependent effects unambiguously in physical space band- 

pass filtering is useful, to visualize scale-dependent physical-space structure, the 
wavelet transform provides a more useful filtering technique (see Brasseur & Wang 
1992; Wang & Brasseur 1993; Wang et al. 1994). One advantage of the wavelet filter 
is that the resulting transform has a clear interpretation also in physical space as the 
convolution of a stretched ‘wavelet’ g(x) with a signal $(x): 

where a is the wavelet scale and w(a) is an arbitrary weighting function used to 
accentuate different scales (see Combes, Grossman & Tchamitchian 1989 ; Brasseur & 
Wang 1992; Wang e f  al. 1994). The function g(x)  must be square integrable and 
therefore of finite support. Consequently @(<, a) contains information from a localized 
region of scale a surrounding <, the details of which depend on the form of the wavelet 
g(x). In this sense the wavelet transform is quasi-local in physical space. 

The Fourier transform of (29) is (Wang et al. 1994) 

&k, a) = W ( U )  a3g*(ak) &k), (30) 
where $(k) and g(k) are the Fourier transforms of $(x) and g(x) ,  respectively, showing 
that the wavelet transform is a scale-dependent spectral filter given by g(ak). Because 
g(x)  has zero mean, @(k,a) contains information from a localized region in Fourier 
space surrounding the peak in g(ak),k,; both (k,l and the support of g(ak) 
surrounding k ,  scale with 1 /a .  Consequently, the quasi-locality of @(<, a) in physical 



58 P. K .  Yeung, J .  G. Brasseur and Q. Wang 

space translates directly to a quasi-locality of &(k, a)  in Fourier space such that the 
more extended the wavelet is surrounding 5 in physical space, the more local is the 
wavelet filter surrounding k,  in Fourier space, and vice versa. 

In this study the ‘Mexican-hat’ wavelet transform is applied to the vorticity vector 
field, $(x) = wi(x) ,  where 

and x2 = x-x .  The Mexican hat wavelet is spherically symmetric in both physical space 
(equation (3 1)) and Fourier space : 

(32) 
The wavelet filter $(ak) selects Fourier modes dominantly near the peak in $(ak) which, 
for the Mexican-hat wavelet is at k,  = .\/2/a. Decreasing the wavelet scale is equivalent 
to shifting the peak of the wavelet filter to select from higher-wavenumber spectral 
shells, and increasing the range of Fourier modes filtered. Further details of the 
wavelet transform and its application as a spectral filter are given in Brasseur & Wang 
(1992) and Wang et al. (1994). 

4.2. The numerical experiment 
In our numerical experiment, initially isotropic turbulence is forced coherently within 
a 4 x 4 array of counter-rotating vortex tubes aligned with the z-axis which is highly 
localized at the large scales. The method of forcing is the same as in our earlier work 
(YB) and is described there in detail. A steady extra forcing term is added to the 
Fourier-space Navier-Stokes equation (20) through which energy and vorticity are 
added at a constant rate to the two-component velocity field and one-component 
vorticity shown in figure 3. Stagnation points are formed in the forcing velocity field 
at locations equidistant from sets of four adjacent spanwise vortex cores. Although the 
forcing term is held fixed in time, the rates of increase of energy and enstrophy due to 
forcing change with time as shown in YB. 

The distribution of vorticity within the forcing vortices is based on an expression 
devised by Melander, McWilliams & Zabusky (1987). The size and geometrical 
arrangement of the 16 vortices, as shown in figure 3, are such that 99.4% of the energy 
of the vortical forcing field is shared equally by the two pairs of Fourier modes of equal 
magnitude in figure 2 with wavevector components (k 2, f 2,O). Forced energy enters 
the Fourier coefficients li(k,) = ib(k,) only through their imaginary parts, b(k,), 
where b(k,) are confined to the (k2, k,)-plane as shown in figure 2. The lengths of these 
vectors increase rapidly with time upon initiation of forcing. 

In the following sections, we present and discuss the effects of continuous large-scale 
vortical forcing on initially fully developed isotropic turbulence over a period of about 
6 initial eddy-turnover times (defined using the initial integral lengthscale and r.m.s. 
velocity component). 

g(x) = - vz e-2’ = (3 - x2) e-z’, 

~ ( k )  = (2x)3’zkze-k’’2 = g(k) .  

(3 1) 

5. Transition from decaying isotropic turbulence to a state of non- 
equilibrium 

Here we examine the evolution of global statistics and anisotropy of initially 
isotropic turbulence at various scales in response to coherent non-isotropic forcing in 
a narrow shell k,  = 2 4 2  = 2.83, as described in the previous section. The initial state 
of fully developed isotropic turbulence is obtained by simulating natural isotropic 
decaying turbulence from a Gaussian velocity field using 12g3 computational nodes. 
The initial isotropic state, the same as in YB, has a Taylor-scale Reynolds number of 
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FIGURE 4. Temporal evolution of global mean kinetic energy (solid line) and dissipation rate (dashed 
line) during continuous forcing. A period of non-equilibrium restructuring takes place between two 
periods of decay. Initial and final slopes representing power laws are - 1.42 and -2.91 respectively 
for energy, and -2.51 and -3.89 for dissipation rate. Selected values of non-dimensional time 
t* = ( t -  5.7645)/TE are also indicated, where t* = 0 is the initiation of forcing and T, is the large- 
eddy timescale in the initial isotropic state. 

20 and an eddy-turnover time TE = 4.60 with kinematic viscosity v = 0.001 377 (units 
must be consistent, but may be chosen arbitrarily). The peaks in the energy and 
dissipation rates at forcing are near k ,  x 3 and k, x 12, respectively, with the highest 
resolved wavenumber k,,, being 60 for a 12S3 grid. Both the largest and smallest scales 
are well resolved. When large-scale forcing is initiated, L / l  = 11.5, where L is a box 
dimension and 1 is the integral scale; and k,,, 7 = 1.63, corresponding to v/d = 0.55, 
where 7 is the Kolmogorov scale and d the grid spacing. During the course of 
simulation k,,, 7 varies between 1.1 and 2.1, meeting the generally accepted criterion 
k , , , ~  > 1 for adequate resolution of the small scales (Yeung & Pope 1989). 

Continuous forcing causes the energy and dissipation rate to deviate from an 
equilibrium isotropic state of power-law viscous decay. Figure 4 shows the evolution 
of mean kinetic energy, +(u, ui), and dissipation rate, (c), over a period of 5.744 initial 
eddy-turnover times beyond the initiation of forcing (three times longer than the 
previous simulations in YB). The ensemble averages (in angle brackets) here are space 
averages over the box. Both quantities deviate only slightly from power laws in the 
early stages of forcing, but subsequently increase with time as the turbulence enters a 
non-equilibrium period of rapid change. Because the forcing modes are at low 
wavenumbers which contribute more to energy than to dissipation rate, energy 
response earlier to forcing and begins to increase about O.6TE earlier than the 
dissipation rate. As a large spike in energy develops at low wavenumbers due to 
forcing, these same low-wavenumber modes gradually become major contributors to 
the dissipation rate also. In fact, the spectral shell 2.5 6 k < 3.5, which contains the 
forced modes, contributes 82 Yo to the energy and 43 Yo to the dissipation rate at about 
2T, after initiation of forcing, far higher than the 9 % and 1 YO, respectively, at the 
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t* = (t-5.7645)/7'~ 

FIGURE 5. Component energies during forcing normalized by twice total energy, shown against non- 
dimensional time after initiation of forcing (t* in figure 4). A, 0, 0 show the x-, y-,  z-components 
respectively. 

initial isotropic state. Consequently, at intermediate times energy and dissipation rate 
evolve in a similar manner. 

Near the end of the simulation, the data show the tendency for a second power-law 
regime with rapid decay after the greatly increased total kinetic energy has become 
overwhelmed by greatly increased dissipation of kinetic energy at the small scales (e.g. 
compare component spectra in figure 8d and figure 8 a). These global measures suggest 
the existence of three global periods of turbulence evolution which are relevant to this 
study: (i) the initial isotropic state of equilibrium decay is disturbed by continuous 
forcing at the large scales ; (ii) the turbulence then evolves through a non-equilibrium 
period of transient change before (iii) reaching what appears to be a new quasi- 
equilibrium state of decay at higher energy level. 

Prolonged continuous forcing leads eventually to oscillations in kinetic energy and 
dissipation rate. We do not analyse the flow beyond the second quasi-equilibrium 
period. Because this second equilibrium state results from continuous anisotropic 
forcing at the larger scales, the small-scale turbulence structure is found to be different 
from the initial period of isotropic decay. 

In figure 4 we use the same arbitrary time t as in YB, with Gaussian initial conditions 
specified at t = 0. In addition, we have indicated some events in non-dimensional time 
t* with the origin shifted to the initiation of forcing ( t  = 5.7645) and time normalized 
by the initial eddy-turnover time TE. With the exception of figure 4, all results will be 
given in non-dimensional time (0 < t* < 5.744). Note that the non-equilibrium period 
of adjustment to forcing ends near t* z 4.8. 

The u, and u2 velocity components gain energy directly from forcing, while u3 is 
affected only through nonlinear interactions. Component energy ratios are plotted 
against time in figure 5 ,  indicating that the forced turbulence is in an overall 
axisymmetric state in which (u : )  x (u : )  > ( u i ) .  Global anisotropy reaches a 
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maximum near t* x 2, but then decreases, even while forcing continues. Anisotropy 
due to the forcing is seen to be transient, although the return to isotropy is slower than 
if forcing were terminated as in YB. Note that the minimum large-scale anisotropy 
level is reached at the apparent end of the transient periods of non-equilibrium 
adjustment displayed in figure 4 (t* - 4.8-5.0). 

6. Temporal development of anisotropy at different scales in the spectral 
view 

be quantified by the anisotropy of the radial energy spectrum tensor: 
The anisotropy of the turbulent fluctuations has a strong scale dependence which can 

where Eij(k) is given by integrating E,(k) over a sphere of radius k. The extent to which 
the velocity fluctuations are anisotropic at scale r - 1 / k ,  is quantified by the deviation 
of A&) from zero, which itself is given by its three principal invariants 
I,@) = A&) = 0, II,(k) = :A&) A,&) and III,(k) = ;A&) A&) A&) (Lumley 
& Newman 1977; the latter two expressions require I, = 0). Whereas III,(k) =i= 0 
necessarily implies II,(k) =k 0 but not vice versa, we have found II,(k) and III,(k) to 
be equally good measures of anisotropy in E,(k). However, whereas II,(k) 2 0 
measures the magnitude of A&), III,(k) may be positive or negative and, as such, 
includes some information on structure at scale k. 

It is important to recognize that whereas non-zero A @ )  necessarily implies some 
level of anisotropy in scales surrounding k,  the converse is not true in general. As we 
shall show in $10, the return of E&) to isotropy does not necessarily imply an 
isotropic structure in the turbulence. In principle, all order moments must be isotropic 
(Kolmogorov 194 1). 

III,(k) is plotted for different times during forcing from t* = 0 to 3.830 in figure 6. 
Immediately after forcing, the forced large scales develop negative III,(k) which 
follows from the two-component nature of forcing. Small-scale anisotropy develops 
rapidly between curves D and F (t* - 1.&1.9), in response to the large-scale forcing, 
before decreasing at later times. It was shown in YB that this development of 
anisotropy at the small scales is a direct consequence of the highly non-local and 
distant triadic interactions among small-scale modes and the forced modes -+kg’. An 
important observation from figure 6 is that small-scale anisotropy develops with the 
sign of III,(k) opposite to large-scale forced aisotropy, indicating an induced 
anisotropic small-scale structure which is different from the forced structure at the 
large scales. Especially important is the observation that the induced small-scale 
anisotropy is progressively greater at smaller scales, consistent with asymptotic 
arguments in 5 3.1. Small-scale anisotropy, however, changes more rapidly with time 
than large-scale anisotropy. 

This last point is made evident by plotting IIIq(k) against time within different 
spectral shells, figure 7. The numerical oscillations in figure 6, a result of the limited 
numbers of very low-wavenumber samples in shells of unit thickness, and low energy 
at very high wavenumbers, are smoothed in figure 7 by using wider wavenumber shells. 
Note that anisotropy in the forced scales (curve A) develops within one initial eddy 
turnover time (TE) while the small scales (curves C-K) require about one TE to respond 
to large-scale forcing. For fixed time, anisotropy increases monotonically with 
wavenumber (shells C, D, E, . . .) in shells k > 10, again consistent with discussions in 
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FIGURE 6. Third anisotropy invariant of the energy spectrum tensor versus wavenumber, at different 
times during forcing. Non-dimensional times t* = 0 (A), 0.479 (B), 0.957 (C),  1.436 (D), 1.676 (E), 
1.915 (F), 2.393 (G), 2.872 (H), 3.351 (I) and 3.830 (J). Whereas the anisotropy of E,,(k) at the small 
scales is near zero for t* later than 3.5, the small scales are not isotropic (discussed in $10). 

93.1. As importantly, note from the expanded view in figure 7(b) that the highest- 
wavenumber shells (H-K) respond first to forcing, followed by successively lower- 
wavenumber shells. This result is consistent with the prediction in 93.4 where it was 
argued based on the asymptotic form of the triadic equations that small-scale 
anisotropy should appear earlier at smaller scales. 

It was also argued in 93.4 that a reduction in small-scale anisotropy can be expected 
at later times in response to the cascade of energy from the large-scale forced modes, 
and that the reductions in III,(k) should begin at larger scales and proceed to small 
scales. This is precisely the behaviour observed in figure 7(a-c). Note that in each shell 
anisotropy increases then decreases with time. Peak anisotropy (figure 7 a )  and 
subsequent reduction in anisotropy (figure 7 c )  shifted to later time at smaller scales. 
From the timescale arguments in $3.4, this shift to later time is a reflection of the 
isotropizing influence of energy-cascading local-to-non-local triadic interactions which 
moves from large to small scales, counteracting the anisotropizing influence of distant- 
to-highly-non-local triadic interaction which moves from the smallest scales to larger 
scales. 

Note the monotonic increase in the peak value of III,(k) with k. This, we argue, is 
a consequence both of the greater influence of the forced modes on smaller scales 
through distant triadic interactions ($3.1), and the greater time required for the 
isotropizing influence of energy-cascading interactions to arrive at smaller scales ($ 3.4). 
The return to nearly total isotropy in E,(k) in all high-wavenumber shells C-K while 
significant anisotropy remains in low-wavenumber shell A was initially unexpected. It 
turns out, however, that the return to isotropy at t* z 3.5 in figure 7 is only illusory. 
As we shall see in $10, a reduced level of anisotropy exists at the small scales at for 
t* > 3.5 which is not detected in E&) but is apparent from visualizations of enstrophy 
or energy isosurfaces in Fourier space and the physical space. The anisotropy is such 



Large-small scale couplings in coherently forced turbulence 

0.012 C(a) I I I I I I 
I ' I O I I I I I  

4.004 - 

I I 
7 1  I I 
\ I  I I 

\ I  I I 
I I 

I 
I 
I 

0 1 2 

t* 

3 4 5 
t* 

0.0003 

0.0002 

0.0001 

-0-R 

3.00 3.25 3. 
t* 

i0 

63 

FIGURE 7. Third anisotropy invariant of the band-pass energy spectrum tensor versus non- 
dimensional time from t* = 0 to 5.744, for different wavenumber bands of thickness 5 units centred 
in the following wavenumbers: 3 (A), 8 (B), 13 (C), 18 (D), 23 (E), 28 (F), 33 (G), 48  (H), 4 3  (I), 38 
(J), 53 (K). (6) and (c) are expanded views showing the periods in which small-scale anisotropy in 
E,(k) begins to develop and disappear, respectively. However, whereas the anisotropy of EJk) at the 
small scales is near zero for t* 2 3.5, we show in 8 10 that the small scales are not isotropic. 

that E,(k) is unresponsive to the turbulence structure, and to quantify small-scale 
anisotropy statistically, high-order moments are necessary. 

Figure 8 shows the evolution of the energy and vorticity spectra at intervals of 
approximately 2 initial eddy-turnover times. Note that at t* x 2 the flow is dominantly 
two-component in velocity and one-component in vorticity at the large scales 
(uz, uy;  uf), but one-component in velocity and two-component in vorticity at the small 
scales (u , ;uz ,wy) .  We shall show in @7 and 8 that the small-scale vorticity field is 
dominated by vortices aligned in the x- and y-directions which are associated with the 
dominantly spanwise velocity field. 

Anisotropy-invariant maps (not shown) have been obtained for the Reynolds-stress, 
vorticity-correlation and dissipation-rate tensors representing velocity and vorticity 
fields filtered in wavenumber space. Consistent with figure 8, the invariant paths of 
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FIGURE 8. Radial component spectra of energy and enstrophy components (Em@) and V,,(k), no sum 
on a)  versus wavenumber roughly every 2 eddy-turnover times: (a) t* = 0; (6)  1.915; (c) 3.830; and 
( d )  5.744. Open symbols are a, Ell(k);  0, E,,(k); 0, E,,(k). Corresponding closed symbols for 
enstrophy component spectra. 

filtered A,(k) indicate that the forced turbulence remains axisymmetric at all scales 
throughout the simulation. 

7. Three-dimensional restructuring of Fourier space by large-small scale 
non-cascading interactions : comparisons with the asymptotic limit 

A number of predictions were made in 993.1-3.3 concerning the redistribution of 
energy, component energy and phase at the small scales as a direct consequence of 
large-small scale interactions during coherent forcing at the large scales. We discuss the 
details of this high-wavenumber restructuring and compare it with these predictions in 
this section. We find that large-small scale interactions lead to well-defined regions in 
wavenumber space where spectral energy and vorticity are concentrated and in which 
a high degree of phase coupling exists among the Fourier modes. We show in $8 that 
a direct correspondence exists between these regions of concentrated activity in Fourier 
space and the structure of the vorticity field in physical space. 
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FIGURE 9. Three-dimensional isosurfaces of enstrophy in Fourier space, &,(k) &F(k), for the forced 
turbulence at peak small-scale anisotropy in figure 7, t* = 1.915. The isosurface level is 0.001 r.m.s. 
above the mean value of the total enstrophy field. (a) Front view, looking down the k,-axis; (b) side 
view, looking along the k,-axis. Note the anisotropic distribution of enstrophy (and energy) in both 
views. 

7.1. Redistribution of small-scale spectral energy 
It was argued in 53.1 that, based on the asymptotic form of the triadic equations at 
large scale separation, distant triadic interactions among the forced modes and smallest 
scales will lead to a redistribution of mode energy Eii(k) = e(k)  at the small scales 
whereby Eii(k) will concentrate around the k,- and k,-axes and be depleted in the 
directions of the forced modes kg) and k, (see figure 2). We further argued that the 
distant triadic response would be stronger and the predicted restructuring of Eii(k) 
would be more apparent at smaller scales. 

To see that the restructuring predicted from the triadic group does take place in the 
simulation, compare figure 1 with figure 9. Figure 1 (b) shows a single isosurface of 
Eii(k) at high wavenumbers (k w 40) in the isotropic state, just before forcing. Figure 
9 shows the distortion in the high-wavenumber isosurface at t* = 1.915, when small- 
scale anisotropy is maximum (figure 7). In the isotropic state, the isosurface is 
spherical. Large-scale forcing through & kg) has distorted the isosurface such that 
high-wavenumber spectral energy concentrates near the k,- and k,-axes. The depletion 
of energy in the & kg) directions are apparent in figure 9 (a)  as depressions in the 
isosurface at 45" to kz,- k,- and k,-axes. The depletion of energy in the k,-direction is 
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FIGURE 10. Isocontours of the spectral distributions of turbulent kinetic energy E,,(k) within the high- 
wavenumber shell 40 < k < 50 at peak anisotropy, t* = 1.915. The spherical coordinates are defined 
in figure 1 1 .  

shown in figure 9(b)  as a distortion of the isosurface in the (k,, k,)-plane from circular 
to ellipsoidal. Finally, these figures show that the response predicted by the distant 
group in equation (10) is stronger at smaller scales in that the concentration of Eii(k) 
around k,  and k, is more apparent at higher wavenumbers. 

Details of the non-isotropic structure of mode energy at high wavenumbers is shown 
in spherical coordinates in figure 10, where the spherical coordinates are defined as 
figure 11. In figure 10 the annular region 40 ,< k d 50 is divided into 40 x 40 uniform 
sampling bins in Q and 0 and local energy computed in each bin. Modes in this bin form 
marginally distant triads with forced modes with scale ratio between 14.1 and 18.7. 
Because the Fourier mode energy is symmetric about the origin, only the k, > 0 modes 
(-7c/2 < 6 < 4 2 )  are shown. Note the highly non-uniform energy distribution in 
figure 10. Very low energy exists within 40" to the k,-axis (0 = O", 180") or in the 
directions of the forced low-wavenumber modes (0 = 90", ~,4 = 45"). Energy is highly 
concentrated in ellipsoidal regions surrounding the k,- and k,-axes, where the ellipsoid 
is roughly three times longer in the k, direction than in the (k,,k,)-plane. 

The redistribution of energy at high wavenumbers from large-scale forcing is a direct 
consequence of the marginally distant triadic interactions in the simulation and follows 
the prediction in Q 3.1 from consideration of the distant triadic equations. We show now 
that the distant interactions also lead to phase couplings among the high-wavenumber 
Fourier modes. 

7.2. Redistribution of small-scale phase 
The small-scale evolution of the velocity, vorticity, strain rate, etc. in physical space, 
as described by equation (4), involves both the redistribution of energy and phase 
among those Fourier modes which characterize the small scales, where 'phase' is 
related to the orientations and relative magnitudes of the real and imaginary parts of 
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FIGURE 1 1. Schematic illustration of the spherical coordinate system k = (k ,  O,$) used in discussions 
of the energy and vorticity distribution within spectral shells. The directly forced modes are +k$) and 
+k$) shown with their lengths exaggerated. Also shown are the definitions of the azimuthal angles 
y, and y b  in the (kz, k,)-plane of the real and imaginary parts (a, b) of the complex Fourier coefficients, 
discussed in 47.2 (figure 12). 

the Fourier coefficients. Here we show that, in response to coherent large-scale forcing, 
direct interactions with the large scales through the distant triadic group cause a 
realignment in the orientation of the Fourier coefficients consistent with the prediction 
in $3.2 - namely, that u(k) and b(k) in the more energetic high-wavenumber regions are 
forced to align by distant interactions with the large-scale forced modes, where 
li(k) = a(k) +ib(k). In addition, we find that the alignment is in a particular direction 
which is directly associated with structure of the vorticity field in physical space ($8). 

Consider, for example, the Fourier modes within the most energetic region 
surrounding the k,-axis in the high-wavenumber shell 40 < k < 50. With reference to 
figure 10, we choose the modes within 50" < B < 130" and 0" < 191 < 20", a conical 
region surrounding the k,-axis. Let ya and y b  be the azimuthal angles of u and b 
measured from the k,-axis in the (k,, k,)-plane as shown in figure 1 1 (ya = arctan (a,/a,) 
and y b  = arctan (b,/b,) ; note that u(k) and b(k) are perpendicular to k) .  A correlation 
in phase among the Fourier modes implies a correlation in y a  and y b  among the 
Fourier modes within the energetic spectral regions. 

In figure 12, the p.d.f.s of ya  and y b  are plotted for those modes in the energetic high- 
wavenumber region around the k,-axis at t* = 0 (the initial isotropic state) and t* FZ 2 
(time of peak small-scale anisotropy). Large-scale forcing causes the initially uniform 
angular distributions to become highly concentrated around ya  - yb - i- 90". That is, 
the Fourier velocities of the most energetic modes surrounding the k,-axis are forced 
by the largesmall scale distant triadic interactions to align approximately with k,. 

In a similar fashion, we find that the complex velocities of the Fourier modes in the 
highly energetic region surrounding the k,-axis are also forced to align with the k,- 
direction so that the entire high-wavenumber region is dominated by z-component 
velocity fluctuations. We conclude that the spectral consequences of distant interactions 
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FIGURE 12. Probability density functions (p.d.f.s) of the azimuthal angles y, and yb  of the real 
(triangles) and imaginary parts (circles) of the complex Fourier velocity around the k,-axis in the 
(k,,k,)-plane (see figure l l ) ,  restricted to Fourier modes within the region 40 < k < 50, 
50" < 6 < 130" and 0" < 141 < 20" around the k,-axis (see figure 10). Closed symbols are for the initial 
isotropic state; open symbols are for the turbulence at peak small-scale anisotropy, t* = 1.915. 

in this forced flow are not only to redistribute energy into certain dominant regions of 
Fourier space, but also to force certain phase couplings to exist among the Fourier 
modes within these energetic regions. While the alignment of the real and imaginary 
parts of the Fourier coefficients was predicted by the asymptotic form of the triadic 
equations for distant interactions (§3.2), the specific alignment of 6(k) with k, is not 
obvious from ( 5 )  and (6). We show in the next section that these spectral processes of 
energy redistribution and forced phase coupling in wavenumber space are dynamically 
equivalent in physical space to the formation of small-scale vortices with dominant 
vorticity aligned in the x- and y-directions. 

7.3. Redistribution of small-scale vorticity 
It was shown in figure 8 that at peak small-scale anisotropy, high-wavenumber 
vorticity is primarily in the w1 and w2 components. It is now clear, from the discussion 
above, why. The vorticity in a Fourier mode is given by &(k) = -ik x li(k). Thus, 
because li(k) is aligned with k, at the small scales, those most energetic modes 
surrounding the k,-axis contribute primarily to vorticity in the y-direction, whereas 
those most energetic modes surrounding the ky-axis contribute primarily to x-vorticity. 
This is indeed the case, as shown in figure 13(a, b), where the distributions of 
Kl(k) = hl(k) h:(k) and K2(k) = h2(k) h:(k) are given in the high-wavenumber shell 
40 d k < 50. Note that the energetic modes near the ky-axis (0 = 90', 4 = & 90') 
contribute primarily to x-vorticity, whereas energetic modes near the k,-axis 
(0 = 90°, 4 = 0) contribute primarily to y-vorticity. Both groups of modes are strongly 
associated with spanwise energy. 

The considerations above show that the anisotropic large-scale forcing leads to a 
small-scale structure dominated by separate localized regions of concentrated energy 



Large-small scale couplings in coherently forced turbulence 69 

k, - 
160 

120 

n 

2 = 8 0 -  
Q 

40 

kz-%o 

l ~ l . l r l ~ l . -  

- (b) 
- 

- 

- -kx, ky 

- 

- 

' 4 0  ' -;o ' 0 ' ' 30 I ' 60 ' ' 90 

and vorticity in Fourier space, one region associated with x-vorticity and the other with 
y-vorticity. We shall find in $8 that in physical space the x-vorticity modes (aligned 
with ky)  and the y-vorticity modes (aligned with k,) are separately associated with 
rectilinear vortices in the x- and y-directions, respectively. 
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FIGURE 14. Isocontours of the spectral distributions of component turbulent kinetic energy within the 
high-wavenumber shell 40 < k < 50 at peak small-scale anisotropy, f*  = 1.915. (a) E,,(k), the z- 
component; ( b )  E,,(k), the x-component. The spherical coordinates are defined in figure 11. 

The helicity of a Fourier mode is given by (Polifke & Shiltman 1989) 
H(k) = 2k*[~(k) x b(k)], (34) 

where a(k) and b(k) are the real and imaginary parts of fi(k). Because large-scale 
forcing causes a(k) and b(k) to align in the small-scale modes surrounding the k,- and 
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FIGURE 15. Isocontours of the rate of spanwise energy transfer T,,(k) within the high-wavenumber 
shell 40 < k < 50 at peak small-scale anisotropy, t* = 1.915, considering only contributions from the 
forced triads. 
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k,-axes, those dominant modes contributing to the small-scale vorticity and velocity 
fields are non-helical, implying that the x-vortices carry mostly y- and z-velocity, while 
the y-vortices carry mostly x- and z-velocity. In this way, the spanwise ( z )  velocity 
becomes the most energetic component. 

7.4. Redistribution of small-scale component energy 
Evolution of the energy spectrum is determined by nonlinear energy transfer and 
viscous dissipation (equations (24) and (25)). We have shown previously (YB), by 
considering the banded energy transfer functions T,,(k Ip, q) (equations (25) and (26)), 
that a highly non-local and distant triadic group involving the directly forced modes 
is the source of small-scale anisotropy development. The dominance of distant triads 
is especially pronounced for energy transfer T,,(k) into the spanwise component. In the 
shell 42.5 < k < 47.5, for example, 73.3 YO of T,,(k) at peak small-scale anisotropy is 
contributed by triads in which one leg is within 2 < k < 4 and the third leg is within 
32 < k < 64. 

In 53.3 we argued, based on the asymptotic form of T,(k) (equation (13)), that 
coherent forcing through +kg) induces a greater level of energy transfer in the z- 
direction as compared with x and y. More specifically we argued that those energy- 
dominant small-scale modes surrounding the k,-axis would transfer energy into Ell 
and E3, whereas those surrounding k,  transfer energy into E,, and The net effect 
of these large-small scale interactions on E,,(k) and E3,(k) at the small scales is shown 
after forcing in figure 14. It is clear by comparing figure 14(a) with figure 10 that both 
total kinetic energy Ei,(k) and the z-component E,,(k) are highly concentrated near the 
k,- and k,-axes and that, as predicted, most of the turbulent kinetic energy in these 
regions is in the z-component. 

k"%O ' -60 ' -A0 ' 0 ' ' 30 ' ' 60 ' ' 90 
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FIGURE 16. Isocontours of the rate of spanwise energy transfer T,,(k) within the high-wavenumber 
shell 40 < k < 50 immediately after the impulsive addition of energy to +k$) ,  considering only 
contributions from the forced triads. Solid and dashed contours are for positive and negative levels, 
respectively. Note the depletion of energy in the direction of k$) (0 = 90", 9 = 45"). 

Figure 14(b) shows that E,,(k) is at least one order of magnitude smaller than E33(k) 
and, as expected, contains contributions from high-wavenumber modes surrounding 
the k,-axis (as well as contributions surrounding the k,, k,-plane). Similarly, 
E,,(k) < E3,(k) and contains contributions from modes surrounding the k,-axis. 

Figure 15 shows the rate of energy transfer T,,(k) over the high-wavenumber shells 
and at the same instant as figure 14, including only contributions from triads which 
contained a forced mode as one leg. Figure 15 shows that after continual forcing over 
2 eddy turnover times, both the energy and the transfer of energy into the z-direction 
by the forced triads is concentrated within those energetically dominant modes 
surrounding the k,- and k,-axes. 

The energy transfer in figure 15 represents the cumulative effect of continual forcing 
beginning with a uniform isotropic initial distribution of energy and phase in the high- 
wavenumber shell. To demonstrate that this cumulative effect is due to direct small- 
scale coupling with the large-scale coherently forced modes, consider the applications 
of an impulsive increase in energy in one pair of forced modes &k$). Figure 16 shows 
isocontours of T,,(k) just after impulsive forcing in the same high-wavenumber shell as 
figure 15. (Note that, by continuity, modes in the k,-direction cannot exchange energy 
with the z-direction, so G3 must be small there.) What is important is the reduction in 
energy transfer in the direction of the large-scale impulsively forced modes kg) 
(6' = 90", q5 = 45"). Similarly, had we impulsively forced & kg) we would have found a 
reduction in q3 in the direction of k(F2) (6' = go", q5 = -45"). However, because each 
forced mode transfers energy in the direction of the other forced mode, when both 
& kg) and & kg)  are impulsively forced simultaneously, as shown in figure 17, a lesser 
but still perceptible reduction in T,,(k) exists in the direction of all forced modes 
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FIGURE 17. Isocontours of the rate of spanwise energy transfer T,,(k) within the high-wavenumber 
shell 40 i k < 50 immediately after the impulsive addition of energy to +k$) and +kg).  Compare 
with figure 16. Note the relative depletion of energy in the direction of forced modes kg)  (0 = 90°, 
#J = i45"). 

(6 = 90°, q5 = k45"). During continuous forcing, the continual reduction of energy 
transfer in the +kg) direction leads, over time, to a significant depletion of ES3 and 
correspondingly greater reductions in q3 in the direction of the forced large-scale 
modes. 

It is apparent that the creation of small-scale anisotropy through distant triadic 
couplings will be sensitive to the degree of anisotropy in the large-scale forced modes 
and to the intensity of forcing, and will be time dependent. As discussed in @3.4 and 
10, anisotropy at the small scales also depends on the changing interplay between the 
distant triadic group and the local-to-non-local energy cascading interactions. 

8. The physical-space view of small-scale restructuring by large-small scale 
non-cascading interactions 

YB showed that the development of anisotropy at the small scales due to anisotropic 
coherent forcing at low wavenumbers is a direct consequence of the most non-local and 
distant triadic interactions in the simulation. In the last section we showed that this 
small-scale anisotropy is due to a restructuring of Fourier space from the low- 
wavenumber forcing which can be predicted, to a large extent, from the equations 
describing individual members of the distant triadic group. In addition we found that 
the small scales evolve from forcing to a vorticity field dominated by two components 
in vorticity, w, and wy,  and one component in velocity, w. An important observation 
is that each vorticity component is localized in Fourier-space; w, and wy are directly 
associated with Fourier modes surrounding the ky- and k,-axes, respectively, as shown 
in figure 13. In this section we describe the corresponding physical-space structure at 
peak anisotropy, and in $9 we develop the physical-space dynamical interpretation of 
distant triadic interactions leading to small-scale anisotropy. 
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FIGURE 18. Three-dimensional isosurfaces of enstrophy in physical space from the wavelet 
transformed vorticity field before forcing and after forcing at peak small-scale anisotropy, t* = 1.915. 
Each vorticity component is first passed through the three-dimensional Mexican-hat wavelet filter 
with peak at k = k,  and then squared and summed. (a) Isotropic state at the large scales (k ,  = 3); (b )  
isotropic state at the small scales (k ,  = 40); (c) forced turbulence at peak small-scale anisotropy, 
t* = 1.915, at the large scales (k, = 3); ( d )  forced turbulence at t* = 1.915 at  the small scales 
(k, = 40). The isosurface levels for the left and right figures are 1.5 r.m.s. and 2.5 r.m.s. above the 
mean values of the wavelet transformed enstrophy fields, respectively. 

We obtain visual representations of the enstrophy field by applying the Mexican-hat 
wavelet transform as a spectral filter to the vorticity vector field o(x), and then forming 
the scale-dependent filtered enstrophy field @'((5, a), as described in $4 (equations 
(29)-(32)). As discussed in $4, the wavelet filter has the advantage of a clear physical- 
space interpretation in which scale-dependent locality surrounding < in physical space 
corresponds to a scale-dependent local filtering around k, in Fourier space. The 
magnitude of k, is inversely proportional to the wavelet scale, a. Because the Mexican- 
hat wavelet is spherically symmetric in physical and Fourier space, k, becomes scalar 
k,, and applying the wavelet transform is qualitatively similar to filtering Fourier 
modes dominantly from spectral shells centred on k = k,  with shell thickness Aka, 
where k, and Aka both scale on l / a  (see Brasseur & Wang 1992). The result is a 
spherically filtered signal around k,  - l / a  which corresponds in physical space to the 
isotropic selection of structures with dominant physical-space scale a. Because the 
wavelet filter is continuous in Fourier space covering a range of scales automatically 
adjusted to the physical-space scale a, the Mexican-hat wavelet transformed signal is 
generally a more realistic visual representation of physical-space structure than a band- 
pass-filtered signal. 
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FIGURE 19. The same field as in figure 18(d) from a different angle: three-dimensional isosurfaces 
of enstrophy from the Mexican-hat wavelet transformed vorticity field in physical space at peak 
small-scale ansotropy, t* = 1.915, at the small scales (k ,  = 40). 

To distinguish the large-scale forced modes from the small scales, the wavelet filter 
is aligned with its peak at k, = 3 (‘large scale’) and k, = 40 (‘small scale’). At large 
values of k,  the wavelet filter is very broad and the small-scale filter includes a small 
amount of information from large scales. Nevertheless, the filters do a good job of 
separating scales of motion and we shall see that the large- and small-scale structures 
are very different after forcing. Figure 18 shows three-dimensional enstrophy iso- 
surfaces from the wavelet filtered vorticity field before forcing (a, b )  and after forcing 
(c ,d) .  Large scales are given by (a) and (c), and small scales by (b) and (d) .  Before 
forcing both the large- and small-scale enstrophy fields are statistically isotropic, there 
being equal probability of statistically similar structures in all directions. The small- 
scale vorticity field, in particular, consists of highly localized vortical spikes in 
elongated regions. It has been shown by a number of workers that, in moderate 
Reynolds number isotropic turbulence, the more intense localized regions are tube-like 
with vorticity aligned in the axial direction along the vortex tubes (She, Jackson & 
Orszag 1990; Vincent & Meneguzzi 1991; Jimenez et al. 1993; Lin 1993). 

After forcing for nearly 2 eddy turnover times, the large-scale structure consists of 
elongated vortex tubes aligned in z (figure 18 c), corresponding closely to the rectilinear 
forced vortices shown in figure 3. The large-scale vortices display variations in z 
associated with the non-forced low-wavenumber modes. At the small scales (figure 18d), 
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multiple slender tube-like enstrophy structures are observed. These structures are 
primarily oriented in x or y ,  and have typical lengths approximately equal to the 
separation distance between the cores of adjacent forcing vortices, which, in 
wavenumber space, are related to the length of the four forced Fourier modes. Thus, 
there is a relationship between the lengths of the vortex tubes and the topology of the 
large-scale forcing, information passed on through the distant triadic group. Figure 19 
shows the structures in figure 18(d) looking from another angle, making it clear that 
the small-scale enstrophy structures are elongated in the x- and y-directions, lying 
roughly side by side in the z-direction. No z-oriented vortices are created by the two- 
dimensional large-scale forcing. 

Figures 18 and 19 indicate that the distant triadic couplings between the large-scale 
forced modes and the small-scale vortical modes have led to the development of 
organized small-scale vortical structures in physical space with highly anisotropic 
preferential directions. It might be suspected from these figures that the vortical 
structures aligned with x and y are vortex tubes with axial vorticity in the x- and y- 
directions, respectively. This is, in fact, the case, as shown in figure 20(a, b). Figure 
20 (a) shows isosurfaces of W E  from the small-scale wavelet transformed vorticity field, 
while figure 20(b) shows isosurfaces of w;. It is clear from these figures that vertically 
and horizontally aligned vortex structures are vortex tubes with appropriately signed 
vorticity . 

Particularly interesting is that the vertically and horizontally aligned vortex tubes, 
created through distant triadic couplings with the large-scale forcing field, are 
separately associated with localized regions in high-wavenumber Fourier-space. Recall 
from the isosurfaces of spectral enstrophy in figure 9 that small-scale vorticity is 
concentrated in regions surrounding the k,- and k,-axes in high-wavenumber Fourier 
space. From figure 13 we learned that the x- and y-components of vorticity are 
separately concentrated within ellipsoidal regions surrounding the k,- and &-axes, 
respectively, suggesting that the Fourier modes might carry the information necessary 
to reconstruct the x- and y-vortices in figure 18(d). This is in fact the case, as shown 
in figure 20(c, d) .  Here, rather than filtering the signal within spherically symmetric 
spectral shells, we filter locally from within spheres centred on pairs of equal and 
opposite high-wavenumber wavevectors & k,, where k, lies either on the k,-axis or the 
k,-axis. More precisely, ‘Morlet’ wavelet filters (see Brasseur & Wang 1992; Wang et 
al. 1994) are used to extract Fourier space within pairs of spherical Gaussian envelopes 
centred on f k,, where k,  = 30kZ or k,  = 306,. The corresponding physical-space 
enstrophy fields associated with the locally filtered high-wavenumber modes 
surrounding the k,  or k,  axes are shown in figures 20(c) and 20(d), respectively. Figure 
20 (c) shows that the x-vortices are localized in Fourier space around the k,-axis at high 
wavenumbers; figure 20 ( d )  shows that the y-vortices are localized around the k,-axis. 
We learned from figure 12 that in each of these localized regions the Fourier coefficients 
is aligned in the k,-direction, thus providing the appropriate sign of vorticity within the 
x- and y-oriented vortices. These structural relationships are a direct consequence of 
the marginally distant triadic interactions. 

From these results, it is clear that the spectral regions of concentrated w, and w, 
shown in figure 13 (a, b) individually describe subsets of directionally dependent vortex 
tubes in physical space. Note that those ellipsoids in figure 13 separately containing the 
small-scale x- and y-vorticity field are greatly elongated in the k,-direction. Fourier 
modes in these regions with a significant k, component are necessary to characterize 
spanwise gradients of vorticity in the x and y vortex tubes, as is apparent in figures 18 ( d )  
and 19. 
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FIGURE 20. There-dimensional isosurfaces of enstrophy from the wavelet transformed vorticity field 
at peak small-scale anisotropy, I* = 1.915, at the small scales. The isosurface levels are 2.5 r.m.s. 
above the mean value of the wavelet transformed enstrophy field. (a), (b) Isosurfaces of W E  and W: at 
the small scales with the vorticity field components passed through a Mexican-hat wavelet filter with 
peak at k,  = 40. (c ) ,  ( d )  Isosurfaces of Morlet-wavelet filtered enstrophy fields. The Morlet wavelet 
filters from localized spherical regions in Fourier space centred on the two symmetrically located 
points fk, ,  where k,  = k , /a ;  here a is the wavelet scaling parameter (see equation (29)) and k,  is a 
wavevector defined in the Morlet wavelet filter, g(k) = 97c3/2[e-(k-ko)z/4 + e-(k+ko)z/4]. Only the real part 
of the wavelet filter is applied. In ( c )  k, = [0,30,0], localizing the filter around the high-wavenumber 
regions of the k,-axis. In ( d )  k ,  = [30,0,0], selecting modes from the high-wavenumber regions of the 
k,-axis. By comparing ( c )  and (a), and ( d )  and (b) we see that the high-wavenumber Fourier modes 
in local regions surrounding the k,- and k,-axes separately create the vortex tubes in the x- and y- 
directions, respectively. 

9. Dynamics of large-small scale non-cascading interactions in the 
physical-space view 

We have learned that the distant triadic group leads to a redistribution of energy and 
phase in high-wavenumber Fourier space which in physical space corresponds to the 
creation of strongly aligned small-scale vortex tubes. Whereas the dynamical process 
of direct largesmall scale interactions has been discussed in terms of triadic 
interactions in the spectral view, we focus in this section on the corresponding physical- 
space description. 

Qualitatively it is not difficult to understand the restructuring of the small-scale 
enstrophy field as the advection and distortion of small-scale vorticity by the large- 
scale energy-dominated eddies. To see this, consider again the large-scale velocity field 
induced by the forced modes shown in figure 3.  The corresponding large-scale strain- 
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rate field at the time of maximum anisotropy (t* = 2) is shown in figure 21. In this 
figure the strain-rate component sI1 has been filtered with a low-wavenumber band- 
pass filter covering the range (0 < k < 6) (as for equation (27) with li replaced by sll). 
Because s,, is zero in the forced modes, sz2 z -sI1 within the forced band of scales. 
Note that the counter-rotating vortices established at the large scales create large 
elongational and compressional strain rates in the ‘ stagnation point ’ regions between 
the forced vortices. One might speculate, therefore, that the physical-space description 
of large-scale energy-dominated modes directly influencing small-scale vorticity- 
dominated modes within distant triadic interactions is essentially described by 
differential large-scale advection, rotation, and deformation of the small-scale vorticity 
field. Specifically, as the large-scale two-dimensional vortices are created by forcing, a 
velocity field is established which advects small-scale vorticity towards the high-strain 
regions between the forced vortices. As the vorticity accumulates it tends to align with 
the direction of principle elongational strain, which alternates among the forced 
‘stagnation points’. We showed in the previous section that the formation of these 
vortex tubes is in one-to-one correspondence with the redistribution of energy and 
phase in high-wavenumber Fourier space - which itself is the dynamical consequence 
of the distant triadic group applicable at infinite scale separation. 

Although details are missing, we shall see that the explanation above qualitatively 
captures the essential physics of large-small scale interaction in the current experiment. 
To show this, consider the dynamic equation which describes the change in small-scale 
component enstrophy, filtered from the high-wavenumber spectral shell 2, 
( (w,  I *IZ) 

where summation is only over Latin indices. Here we use the notation introduced in 
(28), where (w, I 2) is a band-pass-filtered vorticity component, the filter being within 
the same high-wavenumber band as in previous figures : 

(36) 2 = (40 < k < 50). 

The terms on the right-hand side of (35) are advection, straining and dissipation of 
small-scale component vorticity, respectively. The change in total small-scale enstrophy 
is given by the sum of (35) over 01 = 1,2,3. 

As an example, to calculate the advection term we first multiply velocity and 
vorticity gradients in physical space, then transform the product to wavenumber space. 
Retaining only the contributions from Fourier modes inside the set 2, we then 
transform back to physical space and correlate the filtered product with the filtered 
vorticity . 

Figure 22 shows the budget of the small-scale vorticity field during forcing, where 
curves A, B, C and D represent each term in (35) from left to right. The inset gives an 
expanded view within the period of small-scale anisotropy in E&), the period from 
tT = 0.9 to t,* = 3.5, as shown in figure 7. Peak small-scale anisotropy is near t; = 2. 
Note that small-scale advection (B) and straining (C) increase as a result of large-scale 
forcing. However, the net increase in advection and straining is nearly balanced by a 
corresponding increase in viscous dissipation so that the rate of change of small-scale 
enstrophy (A) is nearly zero during the reorganization of the small scales into aligned 
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FIGURE 21. Isocontours of the large-scale strain-rate components sll in the (x,y)-plane passed 
through the low-wavenumber band-pass filter 9 = { k :  0 < k < 6 )  at peak small-scale anisotropy, 
t* = 1.915, after averaging over the z-direction. Solid and dashed lines are positive and negative 
isocontours, respectively. 
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FIGURE 22. Temporal evolution of different terms of the budget of small-scale x-vorticity variance 
(equation (35), with a = 1 ,  where Yf = { k :  40 < k < 50)). The terms are: net rate of change 
a/at( (w,  I Y f ) z )  (A), advection (B), straining (C),  and vorticity dissipation (D). The early-time 
evolution is shown magnified in the inset. t: and t: are the period of small-scale anisotropy in EJk) 
from figure 7. Peak small-scale anisotropy is at t* = 1.915; t: = 4.8 is the beginning of the second 
period of decay in figure 4. 
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FIGURE 23. Comparison of the advection of small-scale component vorticity 0: by all the scales 
[A:&] with (I) small-scale advection by large scales on small scale uz [ 9 : X ] ,  (11) small-scale 
advection by the small scales on small scale w: [%:XI, and (111) advection by the large scales on the 
subset of Fourier modes within X in which most of 0: lies, [9 : X2]. More precisely, the three solid 
curves give the ratios, (I) [ 9 : X ] / [ A : X ] ,  (11) [ X : X ] / [ A : X ] ,  (111) [ 9 :X2 ] / [ 9 :X ] .  The dashed 
curve shows the anisotropy invariant III,(k) against t* for the highest-wavenumber shell (curve K in 
figure 7). t r ,  t:, t!, and t: are defined in figure 22. See 99 for discussion. 

vortex tubes, and remains small relative to the other terms in (35). Note that significant 
enstrophy production begins during the return-towards-isotropy period (t* > t;), and 
changes sign at the initiation of the second equilibrium state (t* 2 tz, where tz = 4.8 
from figure 4). 

It is clear from figure 22 that strain rate and advection of small-scale vorticity 
increase as a consequence of large-scale forcing. It is not clear, however, which scales 
are primarily responsible for small-scale advection and strain. To discover this, we 
further separate the advection and straining terms in (35) into separate contributions 
from large and small scales. This is done by pre-filtering u and sij in wavenumber space 
through a filter 2’ or through filter 2. When pre-filtered through 9, the advection and 
straining terms become 

advection : - ( ( w ,  1 2) [ ( (ui I 9) 2) I %I>, (37) 

straining: - ((0, I %)[(wi(sai 19)) I XI). (38) 
The terms in (37) and (38) represent the advection of mean-square small-scale vorticity 
by the large-scale velocity field, and amplification or attenuation of mean-square small- 
scale vorticity by the large-scale strain rate. Similarly, advection and straining of mean- 
square small-scale vorticity by the small-scale velocity field is given by replacing 9 with 
2. Expressions (37) and (38) are additive over disjoint choices of the set 9 and reduce 
to the forms in (35) if 2’ is taken to be the set A? of all Fourier modes. In what follows, 
the low-wavenumber shell 9 is defined to be 

2’ = (0 < k < 6). (39) 
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FIGURE 24. The same as figure 23 except that we consider straining of small-scale w% rather than 
advection. 

In figures 23 and 24 the relative contribution to the advection and straining, 
respectively, of small-scale component vorticity, w:, are compared : 

curve I 
Small-scale advection and straining by large scales on small scale W E ,  [Y : Z], given 
by the terms in (37) and (38) with a = I are compared with advection and straining 
from all scales, [A : Z], given by (35) with a = 1. 

curve I1 
Small-scale advection and straining by the small scales on small scale w i ,  [Z : Z], 
given by replacing 5? in (37) and (38) with Z are compared with advection and 
straining from all scales, [A: Z], given by (35) with a = 1. 

curve I11 
Advection and straining by the large scales on that subset of Fourier modes within 
Curves Z containing most of W E ,  [Y: Zz], given by replacing Z in (37) and (38) with 
the filter Zx, are compared with advection and straining by the large scales on the 
small scales given by all Fourier modes in the shell 40 < k < 50, [Y :Z ] .  Z? covers 
just those modes surrounding the k,-axis in which w i  is concentrated as given by 
figure 13(a): 

Zx = (40 < k < 50,70" < 141 < 90", 50" < B < 130"). (40) 
I, 11, and I11 in figures 23 (advection) and 24 (straining) show the ratios 
[5? : %]/[A: HI, [Z : %]/[A! : %I, and [Y : ZX]/[Y : 21, respectively, from the time of 
forcing. 

Two features are immediately apparent from figures 23 and 24: (i) both advection 
and straining of the small scales by the large scales increase during the development of 
small-scale anisotropy to represent, by far, the largest contribution to total small-scale 
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FIGURE 25. Isocontours of the advective effect in the (x,y)-plane on small-scale wz due to the large- 
scale velocity field, after averaging over the z-direction. The contoured quantity is given by expression 
(37), with a = 1, 9 = { k :  0 < k < 6 )  and & = { k :  40 < k < 50). Data are at peak small-scale 
anisotropy, t* = 1.915, when the advective action is localized in regions of high small-scale w: 
(compare with figure 20a, c). Similarly, small-scale straining by large scales is localized in the same 
regions. 

advection and straining, and (ii) the local contribution to small-scale advection and 
straining from neighbouring small scales is negligible during forcing. Fully 72 O h  of 
small-scale advection and 82 YO of small-scale straining comes from direct large-small 
scale interactions at the time of peak small-scale anisotropy (t:). Even during the 
second equilibrium period (t* 2 t r )  25 YO of small-scale advection and 18 YO of small- 
scale stretching comes from the large forced scales, about twice the 13 YO and 7 YO at 
the initiation of forcing. 

The third observation to be made from figures 23 and 24 is that, as the small scales 
are restructured by large-scale forcing, most of the advection and stretching of small- 
scale W E  is associated with those Fourier modes in which w: resides (set Xz, above). As 
shown in figure 25, this corresponds, in physical space, to those localized regions in 
which the vortex tubes oriented in the x-direction reside (compare with figure 20), 
indicating that both advection and stretching of small-scale vorticity by the forced 
large scales are responsible for the creation and alignment of the vortex tubes in the 
stagnation-point regions between the large-scale forced vortices. 

We conclude that, in this numerical experiment, the direct dynamical influence of 
large scales on small scales may be interpreted in physical space as the differential 
advection and straining of small-scale eddies by the large scales without significantly 
altering the net enstrophy (and energy) of the small scales. The Fourier spectral view 
adds a great deal more detail to these dynamical effects as distant triadic inter- 
actions between energy-dominated large scales and vorticity-dominated small scales. 
Specifically, while these long-range interactions alter the structure at the small scales at 
asymptotically large-scale separation, there is no direct transfer of turbulent kinetic 
energy between disparate scales. Because these long-range interactions exist at infinite 
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FIGURE 26. The ratio of energy in the unit-width shell surrounding the forced modes to that 
surrounding k = 58 against non-dimensional time t*. The dashed line is the third invariant of EJk) 
within shell 51 < k < 55 (curve K of figure 7) .  

scale separation, the implication is that differential large-scale distortion and advection 
on small scales maintains some level of dynamical dependence of small-scale evolution 
on large-scale structure in the infinite Reynolds number limit. 

10. Competition with energy-cascading interactions, and apparent return 
to isotropy 

From the analyses in the previous section, it is clear that in this numerical experiment 
the Fourier view of distant triadic interactions between forced large-scale modes and 
small-scale dynamics is described in physical space by differential advection, 
distortion and realignment of small-scale vorticity by the large-scale velocity field. 
These long-range dynamical processes compete with local and non-local interactions 
among motions not too widely separated in scale which, as discussed by Brasseur & 
Wei (1994), tend to move progressively smaller scales towards an isotropic state. As 
discussed in 93.4, the extent to which the anisotropizing influences of the long-range 
interactions successfully compete with the more local isotropizing influences depends 
on several interacting factors, including the separation between the large and small 
scales, the degree and structure of anisotropy at the large scales, the temporal evolution 
of large-scale structure, and time. 

Because the timescale associated with distant interactions is smaller than the 
timescale of energy-cascading local interactions, we predicted in 3 3.4 that the small- 
scale anisotropy would initially increase, but then decrease as a new energy cascade is 
established between the forced large scales and the smallest scales. Furthermore, 
because the isotropizing influence of the cascade travels from the large to the small 
scales, we anticipated that the peak in the small-scale anisotropy would occur at later 
times within smaller scales. Both of these predictions were confirmed in figure 7(a), 
where the anisotropy in Eij(k) is plotted against time within different spectral shells. At 
small scales, anisotropy in E,(k) increased then decreased with time, reaching a peak 
which is at later time in higher-wavenumber shells. 
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FIGURE 27. Three-dimensional isosurfaces of the small-scale enstrophy in physical space and in 
Fourier space at t* = 3.83, a time when anisotropy in EJk) has vanished. (a), (b) The small-scale 
enstrophy in physical space from the same positions and with the same relative isosurface levels as 
figures 19 and 18 (d) .  The vorticity vector field has been wavelet filtered with the spherically symmetric 
three-dimensional Mexican-hat wavelet with the peak in the filter at k, = 40. Note that whereas the 
physical-space enstrophy structures have developed a spanwise orientation not existing in figures 
18(d) and 19, much of the forced orientation apparent in figures 18(d) and 19 is also apparent here. 
(c), ( d )  The same relative isosurface of C,(k)CT(k) from the same views as in figure 9. Note that 
whereas the isosurfaces are more spherically symmetric than in figure 9, particularly in (d) ,  anisotropy 
in the enstrophy distribution is apparent in (c ) .  

It was surprising, however, to discover in figure 7 that in all high-wavenumber shells, 
small-scale anisotropy in Eij(k) returned to zero for t* 2 3.5 even with the continued 
existence of significant large-scale anisotropy in the forced modes (shell A). We had 
anticipated that anisotropy would decrease, perhaps to small values, but that a 
detectable level of anisotropy would remain at the small scales due to distant 
interactions with large scales which still contain significant levels of anisotropy. We 
show in this section that, whereas the influence of the distant triadic group relative to 
all other triadic interactions weakens considerably and small-scale anisotropy is 
significantly reduced, it does not vanish as suggested by figure 7. In reality, the small 
scales retain an anisotropic structure beyond t* = 3.5 which is not detectable by the 
second moment ; higher-order moments are required to capture anisotropy statistically. 

Equation (8) indicates that the rate of intermodal energy exchange among small- 
scale modes due to distant triadic interactions relative to local triadic interactions is 
proportional to [E(k,,)/E(k,,)]1'2 for fixed high-wavenumber and low-wavenumber 
shells k,, and kLS,  respectively (LS and SS denote large-scale and small-scale, 
respectively). We anticipate, therefore, that the development of small-scale anisotropy 
in the forced simulation is related indirectly to the energy in the forced modes relative 
to the energy at the small scales. In figure 26 we plot E(k,)/E(k = 58) against time, 
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FIGURE 28. Diagonal components of the normalized radial energy transfer tensor fw(k) = T,(k)/l 
T,&)l, at time t* = 3.830 when E,(k) is isotropic. Curves A, B, and C represent the a = 1, 2, 3 
diagonal components, respectively. 

where E(k,) and E(k = 58) are the energies in shells of unit width surrounding the 
forced modes and k = 58, respectively. Superimposed on the figure is the anisotropy of 
E,(k) within shell K on figure 7 (51 ,< k < 55) .  Note that the anisotropy develops in the 
smallest scales when the energy within the forced modes relative to the small-scale 
modes is sufficiently large that anisotropic redistribution of small-scale energy by long- 
range interactions dominates the local group. Similarly, the apparent return to isotopy 
coincides with an increase in small-scale energy from the establishment of energy 
transfer from the forced modes to the small scales and consequent reduction in relative 
energy between large and small scales. We conclude, therefore, that as indicated by (8), 
the relative influence of the distant triadic group is stronger when the relative energy 
of large to small scales is larger. This observation supports the conclusion, for example, 
that in stationary turbulence deviations from local isotropy should be sought (a) at the 
smallest dissipative scales, where E(k,,)/E(k,,) becomes asymptotically large, and (b) 
for increasing levels of large-scale anisotropy (Brasseur & Wei 1994). 

The observation that energy at the large scales relative to small scales decreases 
when t* 2 2 (figure 26) together with the decreasing level of large-scale anisotropy 
(figure 7 a) is consistent with the observed reduction in small-scale anisotropy. 
Nevertheless, given that the initial state was isotropic by construction, we anticipate an 
observable, albeit significantly reduced, level of small-scale anisotropy beyond t* = 3.5 
in figure 7(a), given the significant level of large-scale anisotropy. This is indeed the 
case, as shown in figure 27 which shows the structure of the small-scale enstrophy field 
in Fourier space (figure 27c, d)  and physical space (figure 27a, b) at t* = 3.83, a time 
when anisotropy in E,(k) has vanished. Figure 27(c, d)  shows the same relative 
isosurface of 4,(k)Ga(k) from the same views as in figure 9 at peak small-scale 
anisotropy. Note that whereas the isosurfaces in figure 27(c, d )  are more spherically 
symmetric than in figure 9, particularly in the (ky,  k,)-plane (figure 27d), anisotropy in 
enstrophy (or energy) distribution remains in the (kz, k,)-plane is apparent (figure 27c). 
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FIGURE 29. Diagonal _components of the normalized radial energy transfer tensor limited to triads 
with one leg in shell TJklp) = T,,(kJp)/lT,,(kIp)l, at time t* = 3.830 (when E&) is isotropic) for 
2 < p < 4. Curves A, B, and C represent the a = 1, 2 ,  3 diagonal components, respectively. 

Corresponding small-scale enstrophy contours in physical space are shown in figure 
27(a, b). Like figure 18(d),  the vorticity vector field has been wavelet filtered with the 
spherically symmetric 3D Mexican-hat wavelet, as described in @4 and 8 ,  with the peak 
in the filter at k,  = 40. Figure 27(a, b) at t* = 3.83 is shown from the same positions 
as figures 18(d) and 19 at peak anisotropy (t* = 1.915) and has the same relative 
isosurface level. Note in comparing these figures that whereas the physical-space 
ensotrophy structures in figure 27 (a ,  b) have developed a spanwise orientation not 
existing in figures 18(d)  and 19, much of the forced orientation apparent in figures 
18(d) and 19 is also apparent in figure 27(a, b). It is clear that the structure at f* = 3.83 
is very different from the initial isotropic state shown in figure 18(a) and that the long- 
range interactions continue to affect the small-scale structure during the period when 
Eij(k) contains no apparent anisotropy. 

To understand how it is that Eti(k) can be isotropic while the non-local-to-distant 
energy transfer processes are anisotropic, consider figures 28-30 together with the 
dynamic equation for E,,(k) given by (24) integrated over spheres of radius k .  Clearly 
from (24), if Eij(k) and aEij(k)/at are isotropic, as is the case in the small scales at 
t* = 3.83, the radial energy transfer tensor ?&(k) must also be isotropic. This is the 
case, as shown in figure 28 where the diagonal components of the normalized transfer 
sDectrum. 

are plotted against k at t* = 3.83. Absolute values are taken in the denominator to 
avoid confusion from the sign change in T',(k) within the forced shell. Using the 
decomposition given in (26), q j (k )  may be written 
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FIGURE 30. Diagonal components of z , ( k J p )  as in figure 29 at time t* = 3.830 for 8 < p < 16. 

Curves A, B, and C represent the a = 1 ,  2, 3 diagonal components, respectively. 

where Gi(k Ip) is the energy transfer to shell k due only to triadic interactions with one 
leg in shell p. The sum is over all p-shells covering the spectrum. Because the left-hand 
side of (42) is isotropic for high k, so must be the sum on the right-hand side. However, 
the individual terms in the sum on the right-hand side are not isotropic, as shown in 
figures 29 and 30. 

Figure 29 shows the anisotropy in the energy transfer qj(k (p) to velocity components 
u, Y and w at the small scales (high k)  due to triadic interactions with the shell 2 < p < 4 
containing the forced modes at t* = 3,83, where 

The figure is similar to figure 15 in YB and is consistent with the discussions in $3.3  
where it is argued that the distant triadic interactions with the forced modes will 
transfer energy into the z-component of energy at the expense of the x- and y-energy 
components. Figure 29 shows this effect within the non-local to marginally distant 
triadic interactions in the simulation, at a time when E,(k) is isotropic. Because energy 
transfer within the marginally distant group is non-isotropic, so must be the more local 
interactions, as shown in figure 30 with the p-shell now covering wavenumbers 8 to 16. 
Note that the energy transfer at the small scales within the more local group of triadic 
interactions is opposite to the marginally distant group with the forced modes; energy 
is distributed into the x- and y-energy components at the expense of the z-component. 
The anisotropic local-to-non-local triadic interactions act to counteract the anisotropic 
distant interactions so that the energy transfer tensor q j (k )  is isotropic. However, as 
discussed in 97, the anisotropic structure observed at the small scales follows from the 
marginally distant group, not the more local triadic interactions. 

Whereas the second-order velocity moment and transfer spectra tensors are 
isotropic, the turbulence is not. The reason the second-order tensors do not detect the 
anisotropy in the signal is apparently the particular form of symmetry which exists in 
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FIGURE 3 1. The normalized radial third-moment tensor, defined in (44) and (45) as a function of 
wavenumbers at the initial isotropic state, t* = 0 (----); at peak anisotropy t* = 1.915 (-); and 
when EJk)  is isotropic t* = 3.830 (---). A ,  = 0 for isotropic turbulence as is clear from the initial 
state. Note by comparing this figure with figure 6 that the anisotropy of the radial energy tensor is 
sensitive to the anisotropic structure of the forced scales at t* = 3.83 but not to the anisotropic 
structure of the small scales (curve J), whereas A,@) is sensitive to small-scale anisotropy but not to 
the anisotropy in the forced scales. 

the anisotropic turbulence structure. Compare figure 9 (a, b) at peak anisotropy in 
Eij(k) with figure 27(c, d )  where E&) is isotropic. In both sets of figures the energy 
distribution has a symmetry in the (kz, &,)-plane such that any mutually perpendicular 
pair of axes sees the same energy or enstrophy distribution at high wavenumbers. The 
same statement can be made about the ( I c y ,  k,)-plane in figure 27(d), but not at peak 
anisotropy in figure 9 (6). We speculate, therefore, that E&) reflects primarily the non- 
spherical symmetry in the (kg,  k,)-plane, and that the evolution of III,(k) at high k in 
figure 7 is a reflection of the distortion of the energy distribution in the (kg ,  k,)-plane, 
first from a spherical distribution in figure 1 to an elliptical distribution in figure 9 (I* 
from 0 to 2), then from the elliptical energy distribution back to a spherical distribution 
in figure 27(d) (t* from 2 to 3.5). 

Because the second moment appears incapable of statistically detecting the 
anisotropic structure at the small scales in the forced simulation when t* 2 3.5, it 
appears that higher-order moments are needed to quantify small-scale anisotropy, a 
reminder of Kolmogorov's (1 94 1) original argument in which local isotropy is defined 
in terms of probability distribution functions whose complete specification requires 
knowledge of statistical moments of all orders. To test this hypothesis with the current 
simulation, we calculated the Fourier transform of the third moment, &(r) = 
( U ~ ( X ) V ~ ( X + Y ) U ~ ( X ) ) , ~ ~ ~ ( ~ ) .  From Monin & Yaglom (1975, pp. 63, 70) 

where the complex conjugate C.C. is added to make the tensor real-valued. It may be 
shown that when integrated over a sphere of radius k,  &(k) is zero if the scales within 
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the shell k are statistically isotropic. In figure 31 we plot AF(k) against k ,  where A&) 
is the square of e j , (k )  normalized with the energy within the shell k :  

In figure 31 A,(k) is plotted at the initial isotropic state (t* = 0) ,  at peak anisotropy in 
Eij(k) (t" = 1.915), and when the anisotropy in E,(k) has disappeared (t* = 3.83). At 
the initial isotropic state A,@) is zero for all k .  At both t* = 1.915 and 3.83, however, 
A,(k) departs from zero at the small scales, with the lower small-scale anisotropy at 
t* = 3.83 rather than at t* = 1.915.t 

Note by comparing figure 31 with figure 6 that the anisotropy of the radial energy 
tensor is sensitive to the anisotropic structure of the forced scales at t* = 3.83 but not 
to the anisotropic structure of the small scales (curve J), whereas A,(k) is sensitive to 
small-scale anisotropy but not to the anisotropy in the forced scales! We conclude, 
therefore, that different statistical measures are sensitive to different anisotropic 
structure. Furthermore, whereas the deviation from anisotropy in a given statistical 
measure does imply the existence of anisotropic structure in the turbulence, a null result 
in a single statistical measure of anisotropy does not necessarily imply that the statistical 
structure of the turbulence is isotropic. 

11. Discussion: the potential for deviations from local isotropy 
In general terms, this study demonstrates the influence of long-range interactions 

which are present, in principle, in the high Reynolds number limit. We show that the 
small-scale dynamics associated with the more long-range interactions in the numerical 
experiment follow a three-dimensional temporal evolution which is predictable in 
many important respects from the asymptotic form of Navier-Stokes nonlinearity 
applicable in the infinite Reynolds number limit. Combined with earlier studies by 
Brasseur (1991), Yeung & Brasseur (1991) and Brasseur & Wei (1994), the study 
implies the existence of a direct influence of large-scale evolution on small-scale 
dynamics which is always present in principle, but which may be strongly stimulated 
during non-equilibrium transients in large-scale energy and structure. 

The study focuses on the relationship between the spectral view and the physical- 
space view in the evolution of the small scales due to long-range interactions. We find 
that in this numerical experiment the long-range interactions are a reflection of 
differential advection and distortion of small-scale vortical elements by the large-scale 
energy field. It appears that the large scales have the ability to redistribute the small- 
scale motions without directly giving up energy to these motions. The degree of small- 
scale restructuring depends on the energy and timescales of coherence in the large-scale 
structure, and on the transients in large-scale restructuring. 

It is difficult to extract dynamical details of interactions among scales within the 
physical-space view. For this reason, detailed dynamical analysis of scale interactions 
is best carried out within a decomposition explicitly focusing on scale. We use the 
Fourier representation as a useful decomposition in scale, where our focus is on the 
three-dimensional structure of Fourier decomposition. Fourier decomposition is 
natural in homogeneous turbulence in that the three-dimensional distribution of 
Fourier modes provides an elemental description of scale that includes direction, 

t The reduction in A,(k) at the highest k is apparently due to dealiasing and numerical error in 
spectral regions where energy levels are very low. 
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energy and phase information while at the same time providing a readily interpretable 
set of dynamical equations, which we exploited in this work. Because a Fourier mode 
collects information from many ensembles of structures within the turbulent flow, 
when the turbulence structure is independent of position, the Fourier mode represents 
the net contribution to a given harmonic scale in a given direction. (The non-locality 
of Fourier is advantageous for scale decomposition of statistically homogeneous 
turbulence in that each Fourier mode samples all statistically similar structural 
elements within the signal.) Nevertheless, the main issue is not so much the 
decomposition itself, but rather the relationship between the three-dimensional time- 
evolving structure within the decomposition and the three-dimensional time-evolving 
structure of the signal. We take the position in this paper that once this relationship is 
clearly understood, the dynamics in Fourier space may be interpreted in terms of 
structural dynamics. 

Brasseur & Wei (1994) argued that, whereas local and non-local scale interactions 
are forward cascading on average, distant interactions tend to redistribute energy 
within spectral shells. As a consequence, distant interactions from a non-isotropic 
large-scale energy distribution lead to depletions of energy in high-wavenumber 
regions of Fourier space which, in the current numerical experiment correspond to the 
directions of the four low-wavenumber forced modes and the direction perpendicular 
to the four forced modes. The result, we have shown, is the concentration of high- 
wavenumber spectral energy and vorticity along four coordinate directions, consistent 
with the distant triadic equations and the arguments of Brasseur & Wei (1994). As 
importantly, we have observed a certain locality in Fourier space. In physical space, a 
large-scale field of counter-rotating vortices is established which advects small-scale 
vorticity into stagnation-point regions, distorting the vortex tubes so as to align with 
the principal strain directions. The result is a collection of small-scale vortices aligned 
with the x- and y-axes. In Fourier space these small-scale vortices are described within 
localized groups of Fourier modes surrounding the k,- and &,-axes. We showed that 
the dynamical influence of long-range interactions at the small scales is to redistribute 
vorticity and energy at high wavenumbers in Fourier space as a reflection of a 
redistribution of vorticity and energy at the small scales in physical space. This 
redistribution is such that local regions in Fourier space correspond precisely to 
spatially localized, vortical structures in physical space. Even more interesting is 
that the Fourier modes surrounding the k,- and k,-axes separately describe 
subsets of vortices in physical space aligned with the x- and y-directions, respectively. 
That is, the dynamical evolution and structure of local regions in Fourier space 
correspond precisely to the dynamical evolution and structure of subsets of pervasively 
distributed, but spatially localized, vortical structures in physical space. 

Structure in physical space is described by the distribution of both energy and phase 
in Fourier space. Uniform distributions of energy and phase of Fourier modes on 
spheres centred on the origin in three-dimensional Fourier space are necessary for a 
statistically isotropic structure to exist in physical space at the scale of the spheres in 
homogeneous turbulence. Showing a non-isotropic distribution in either is sufficient to 
argue for anisotropy. We have made extensive use in this study of non-isotropic 
distributions of energy on spheres implying the existence of anisotropy at those scales. 
However, additional study of the distant triadic equations indicates that redistribution 
of energy tends to be a partner with redistribution of phase at the small scales within 
the distant triadic group. In particular, we have found that those Fourier modes within 
the local regions of high-wavenumber Fourier space directly associated with subsets of 
small-scale vortices in physical space are phase-coupled, and that the phase coupling, 
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like the redistribution of energy itself, is a direct consequence of the long-range 
interactions in the simulation. The implication is that structure in the physical-space 
view, localized but pervasively spread throughout the turbulence, is associated with 
spectrally local concentrations of dynamically coupled Fourier modes. More recent 
work has shown that the same statement can be made in naturally decaying turbulence 
(Brasseur & Wang 1993). 

The work of Brasseur & Wei (1 994) suggests that local-to-non-local cascading 
interactions have an isotropizing influence at the small scales. We showed here that the 
timescale for distant interactions is shorter than for local interactions, so that the initial 
anisotropizing influence of distant interactions should be reduced by local- to-non-local 
interactions once large-scale energy has cascaded to the small scales. Consistent with 
this argument, we found in the current study that long-range-induced small-scale 
anisotropy reached a peak before diminishing once again upon arrival of fonvard- 
cascading large-scale energy. However, analysis of the local-to-non-local triadic 
interactions which contribute to the energy-transfer spectral tensor indicates that the 
isotropizing influences of the energy-cascading interactions are somewhat more 
complex than the description give by Brasseur & Wei (1994) in that the more non-local 
cascading interactions appear to transfer energy anisotropically, but in a manner 
opposing the anisotropic structure induced by the marginally distant interactions. 
Further study is needed to clarify these observations. 

At this point we should explicitly address a question that was brought out in the 
course of the review - is it possible that the development of small-scale anisotropy from 
t* = 0 to 1.915 (shown, for example, in figure 7) is a consequence of a cascading series 
of instabilities that transfer information from the forced scales to the small scales? 
There are many reasons, discussed at length in #&lo, why this cascade-based model 
cannot explain the results of the simulation. Most obvious among these is that the 
large-scale forced modes do not become unstable during the period of anisotropy 
development, as is clear visually in figure 18(c). Indeed, figure 7 indicates that the 
period over which the small scales develop a well-defined anisotropic structure 
(0 < t* < 1.915) is also the period where the two-dimensional large-scale forced 
vortices form (this concurrent development of large- and small-scale structure is 
especially clear in animations we created of large- and small-scale enstrophy 
isosurfaces). Viewed spectrally, a cascade-based explanation would require that the 
smallest scales (k - 50, say, quantified in figures 6 ,  7, 10, 13-17) are formed from 
triadic interactions with scale separations primarily in the range 2-7 (Zhou 1993a, b; 
Brasseur & Wei 1994). That is, spectral wavenumbers k N 7-25 would be primarily 
responsible for the development of anisotropic structure within scales k N 50. However, 
as shown in figure 7, the development of anisotropy in the smaller scales (k - 50) 
precedes the development of anisotropy in the larger scales (k - 7-25). Indeed, the 
observation that the development of small-scale anisotropy proceeds from the smallest 
scales to larger scales (figure 7 b) cannot be explained with cascade-based arguments 
and is the first of many results which can only be explained from the asymptotic form 
of the triad equations in the distant limit (#3, 7). As discussed in 510, however, the 
reduction in anisotropy when t* > 1.915 is a consequence of cascading energy. 

A general conclusion of this work is that two competing dynamics interact within the 
simulated turbulent flow : (i) direct transfer of large-scale structural information 
(without direct energy transfer) from the large-scale forced modes, first to the smallest 
turbulent scales then progressively to larger turbulent scales, and (ii) transfer of energy 
(along with structural modification) from the large forced scales to smaller scales, 
eventually reaching the smallest scales of motion. Detailed analysis in this paper and 
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YB has shown the first dynamics to be a consequence of long-range scale interactions 
which force a redistribution of energy and phase at the small scales in a manner directly 
related to the distribution of energy and phase within the large forced scales. The 
second dynamics is from ' local-to-non-local ' energy-cascading triadic interactions 
which transfer energy and phase information from larger to somewhat smaller scales, 
but in a manner which weakens the anisotropizing influence of the long-range 
interactions at progressively smaller scales. Consequently, the peaks in the anisotropy 
curves of figure 7 move from larger to smaller scales with time. 

We should also mention a recently completed study by Zhou, Yeung & Brasseur 
(1394) which explicitly addresses the argument of complete cancellation within the 
distant triadic group by Waleffe (1992). The Zhou et al. study further confirms the 
conclusions from this work - that complete cancellation within long-range interactions 
does not take place and that the long-range interactions are responsible for the 
development and maintenance of small-scale anisotropy during large-scale forcing. 
The study also shows explicitly that, while direct energy transfer from the large-scale 
forced structure to smaller scales decreases rapidly with scale separation, the 
anisotropic restructuring of the small scales increases with scale separation, confirming 
the triad-based conclusions in this study. 

Although it appears from the second moment that the small scales return to an 
isotropic state, we show that in reality they do not. This observation is important for 
experimental searches for deviations from local isotropy which, of necessity, can only 
use limited statistical measures of small-scale anisotropy. In the current study the 
deviatoric part of the second moment velocity-velocity correlation tensor is used as a 
measure of local anisotropy. We learned in this study that the second-moment velocity 
tensor is sensitive to some anisotropic characteristics, but insensitive to others. Once 
the energy cascade re-establishes itself after forcing, the second moment becomes 
insensitive to the particular small-scale anisotropic structure which exists at the later 
times. Nevertheless, the three-dimensional distribution of small-scale spectral energy 
shows clearly that significant small-scale anisotropy remains at later times. The third 
velocity moment, on the other hand, is able to statistically detect small-scale 
anisotropy, but is insensitive to large-scale anisotropy, at these later times. We 
conclude, therefore, that whereas anisotropy in the measure implies anisotropy in the 
signal, the converse is not necessarily true. A null result in a single statistical measure 
of anisotropy is a necessary condition, but is not sufficient to guarantee isotropy. Some 
care must be taken, therefore, in the use of limited anisotropy measures in analysing 
local isotropy at the small scales. 

This work indicates that Fourier modes, and their corresponding scales of motion, 
are dynamically coupled over large separations in scale, the strength of the coupling 
increasing with the relative energies of the large- and small-scale modes. Within 
individual triads, then, the strongest couplings tend to be between the large energy- 
containing scales and the dissipative scales with local Reynolds number of order one 
or greater. Because an element of small-scale evolution is coupled to the structure and 
evolution of the large scales within the distant triadic group, if the large scales have a 
statistically preferred direction, the energy transfer within the distant group of triadic 
interactions also has a preferred direction. This directional dependence persists in 
ensemble averages of statistically similar flows. The distant group, then, is in principle 
at variance with the Kolmogorov hypothesis of statistical large-small scale 
independence in the asymptotic limit. However, the deviation from local isotropy is a 
matter of degree that depends on a variety of interacting factors (Brasseur & Wei 1994). 
If the Kolmogorov hypothesis is viewed as an approximation of reality, then in practice 
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the approximation may be a very good one in many instances. By the same token, 
however, if one is aware of the existence of long-range dynamical processes which are 
at variance with the hypothesis, and if one understands the structure and consequences 
of those dynamical processes, then the potential exists to identify situations where the 
hypothesis breaks down. This paper has provided some understanding of when and 
why the hypothesis breaks down. It appears that non-equilibrium turbulent flows are 
particularly susceptible to the effects of long-range interactions and that turbulence 
closures applied to strongly non-stationary and non-equilibrium flows may need to 
include these effects to properly capture the temporal variations in turbulence 
evolution. 

We acknowledge valuable interactions in the course of this work with K. R. 
Sreenivasan, Lex Smits, Jim McMichael and Pat Purtell. Many interesting discussions 
were had surrounding various elements of this work with Andzrej Domaradzki, Ye 
Zhou, John Lumley, Julian Hunt, Christos Vassilicos, Mark Nelkin, John Kim, Bob 
Antonia, Seyed Saddoughi and Peter Bradshaw. The interactions with the referees led 
to a major revision of this paper so as to make clear, we hope, the important messages 
resulting from the study. We value all our discussions with our colleagues and hope 
they continue. We gratefully acknowledge support from grants AFOSR 89-0026 and 
URI/AFOSR 90-01 13. The computational resources for this work were made 
available from the Cornell Theory Center (CNSF), which receives major funding from 
the National Science Foundation, New York State Science and Technology 
Foundation and the Corporate Research Institute. 

R E F E R E N C E S  

ANTONIA, R. A., ANSELMET, F. & CHAMBERS, A. J .  1986 Assessment of local isotropy using 

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press. 
BRASSEUR, J. G. 1991 Comments on the Kolmogorov hypothesis of isotropy in the small scales. 

AZAA Paper 91-0230. 
BRASSEUR, J. G. & CORRSIN, S. 1987 Spectral evolution of the Navier-Stokes equations for low order 

couplings of Fourier modes. In Advances in Turbulence (ed. G. Comte-Bellot & J. Mathieu), pp. 
152-162. Springer. 

BRASSEUR, J. G. & WANG, Q. 1992 Structural evolution of homogeneous turbulence at different 
scales analyzed using 3D wavelet transforms. Phys. Fluids A 4, 2538-2554. 

BRASSEUR, J. G. & WANG, Q. 1993 Locality in Fourier space, locality in physical space and the 
relationship between the two. Bull. Am. Phys. SOC. 38, 2228 (1993 meeting of the Division of 
Fluid Dynamics of the American Physical Society, Albuquerque, New Mexico). 

BRASSEUR, J. G. & WEI, C.-H. 1994 Interscale dynamics and local isotropy in high Reynolds number 
turbulence within triadic interactions. Phys. Fluids 6, 842-870. 

BRASSEUR, J. G. & YEUNG, P. K. 1991 Large and small-scale coupling in homogeneous turbulence: 
analysis of the Navier-Stokes equation in the asymptotic limit. Proc. Eighth Symposium on 
Turbulent Shear Flows, Munich, Germany, pp. 16-4- 1-1 6-4-6. 

BROWNE, L. W. B., ANTONIA, R. A. & SHAH, D. A. 1987 Turbulent energy dissipation in a wake. J.  
Fluid Mech. 179, 307-326. 

CHAMPAGNE, F. H. 1978 The fine-scale structure of turbulence velocity field. J .  Fluid Mech. 86, 

COMBES, J. M., GROSSMANN, A. & TCHAMITCHIAN, P. (eds.) 1989 Wauelefs. Springer. 
DOMARADZKI, J. A. & ROGALLO, R. S. 1990 Local energy transfer and nonlocal interactions in 

measurements in a turbulent plane jet. J.  Fluid Mech. 163, 365-391. 

67-108. 

homogeneous, isotropic turbulence. Phys. Fluids A 2, 41 3426. 



94 

DURBIN, P. A. & SPEZIALE, C. G. 1991 Local anisotropy in strained turbulence at high Reynolds 

GEORGE, W. K. & HUSSEIN, H. J. 1991 Locally axisymmetric turbulence. J .  Fluid Mech. 233, 1-23. 
JIMENEZ, J., WRAY, A., SAFTMAN, P. G. & ROGALLO, R. S. 1993 The structure of intense vorticity in 

homogeneous isotropic turbulence. J .  Fluid Mech. 255, 65-90. 
KIM, J. & ANTONIA, R. A. 1993 Isotropy of the small scales of turbulence at low Reynolds numbers. 

J .  Fluid Mech. 251, 219-238. 
KOLMOGOROV, A. N. 1941 The local structure of turbulence in incompressible viscous fluids for very 

large Reynolds numbers. C.R. Acad. Sci. URSS 30, 301-305. 
KARYAKIN, M. Y. ,  KUZNETZOV, V. R. & PRASKOVSKY, A. A. 1991 Zzv. Adad. Nauk SSSR, Mech. 

Zhidk. i Gaza 5, 51-59. 
LIN, W.-Q. 1993 Structural and dynamical characteristics of intermittent structures in homogeneous 

turbulent shear flow. PhD thesis, Department of Mechanical Engineering, Pennsylvania State 
University, University Park, PA. 

P. K. Yeung, J .  G. Brasseur and Q. Wang 

numbers. Trans. ASME I: J .  Fluids Engng 113, 707-709. 

LUMLEY, J. L. 1992 Some comments on turbulence. Phys. Fluids A 4, 203-212. 
LUMLEY, J. L. & NEWMAN, G. R. 1977 The return to isotropy of homogeneous turbulence. J .  Fluid 

Mech. 82, 161-178. 
MELANDER, M. V., MCWILLIAMS, J. C. & ZABUSKY, N. J. 1987 Axisymmetrization and vorticity- 

gradient intensification of an isolated two-dimensional vortex through filamentation. J.  Fluid 
Mech. 178, 137-159. 

MESTAYER, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary 
layer. J .  Fluid Mech. 125, 475-503. 

MONIN, A. S. & YAGLOM, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2, 
MIT Press. 

NELKIN, M. 1993 Pressure fluctuations and local isotropy in high Reynolds number turbulence. In 
Unstable and Turbulent Motion of Fluid (ed. S. Kida), pp. 156-161. World Scientific. 

ONSAGER, L. 1949 Statistical hydrodynamics. Nuoco Cim. Suppl. 6 (2), 279. 
POLIFKE, W. & SHTILMAN, L. 1989 The dynamics of helical decaying turbulence. Phys. Fluids A 1, 

ROGALLO, R. S. 1981 Numerical experiments in homogeneous turbulence. Tech. Mem. 81315. 
NASA Ames Research Center. 

SADDOUGHI, S. G. & VEERAVALLI, S. V. 1994 Local isotropy in high Reynolds number turbulent 
shear flows. J .  Fluid Mech. 268, 333-372. 

SHE, Z.-S., JACKSON, E. & ORSZAG, S. A. 1988 Scale-dependent intermittency and coherence in 
turbulence. J .  Sci. Comput. 3, 407434. 

SHE, Z.-S., JACKSON, E. & ORSZAG, S. A. 1990 Intermittent vortex structures in homogeneous 
isotropic turbulence. Nature 344, 226-228. 

SREENIVASAN, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. SOC. 
Lond. A 434, 165-182. 

VAN ATTA, C. 1991 Local isotopy of the smallest scales of turbulent scalar and velocity fields. Proc. 
R. SOC. Lond. A 434, 139-147. 

VINCENT, A. & MENEGUZZI, M. 1991 The spatial structure and statistical properties of homogeneous 
turbulence. J.  Fluid Mech. 225, 1-20. 

WALEFFE, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 
35C363. 

WANG, Q. & BRASSEUR, J. G. 1993 Application of nonsymmetrical 3D wavelet filters to the analysis 
of anisotropic turbulence data. In A S M E  1993 Forum on Turbulent Flows, FED-Vol. 155, pp. 

WANG, Q., BRASSEUR, J. G., SMITH, R. W. & SMITS, A. J. 1994 Multi-dimensional continuous 

YEUNG, P. K. & BRASSEUR, J. G. 1991 The response of isotropic turbulence to isotropic and 

YEUNG, P. K. & POPE, S. B. 1988 An algorithm for tracking fluid particles in numerical simulation 

2025-2033. 

137-142. 

wavelet transforms and applications to turbulence data. Proc. R. SOC. Lond. A (submitted). 

anisotropic forcing at the large scales. Phys. Fluids A 3, 884897 (referred to herein as YB). 

of homogeneous turbulence. J.  Comput. Phys. 79, 373416. 



Largesmall scale couplings in coherently forced turbulence 95 

YEUNG, P. K. & POPE, S. B. 1989 Lagrangian statistics from direct numerical simulations of 

ZHOU, Y. 1993a Degrees of locality of energy transfer in the inertial range. Phys. Fluids A 5, 

ZHOU, Y. 19936 Interacting scales and energy transfer in isotropic turbulence. Phys. Fluids A 5, 

ZHOU, Y., YEUNG, P. K. & BRASSEUR, J. G. 1994 Scale disparity and spectral transfer in anisotropic 

isotropic turbulence. J. Fluid Mech. 207, 531-586. 

1092-1 094. 

251 1-2524. 

numerical turbulence. Phys. Fluids (submitted). 




